首页> 外文期刊>Journal of database management >An MDA Approach and QVT Transformations for the Integrated Development of Goal-Oriented Data Warehouses and Data Marts
【24h】

An MDA Approach and QVT Transformations for the Integrated Development of Goal-Oriented Data Warehouses and Data Marts

机译:MDA方法和QVT转换,用于面向目标的数据仓库和数据市场的集成开发

获取原文
获取原文并翻译 | 示例

摘要

To customize a data warehouse, many organizations develop concrete data marts focused on a particular department or business process. However, the integrated development of these data marts is an open problem for many organizations due to the technical and organizational challenges involved during the design of these repositories as a complete solution. In this article, the authors present a design approach that employs user requirements to build both corporate data warehouses and data marts in an integrated manner. The approach links information requirements to specific data marts elicited by using goal-oriented requirement engineering, which are automatically translated into the implementation of corresponding data repositories by means of model-driven engineering techniques. The authors provide two UML profiles that integrate the design of both data warehouses and data marts and a set of QVT transformations with which to automate this process. The advantage of this approach is that user requirements are captured from the early development stages of a data-warehousing project to automatically translate them into the entire data-warehousing platform, considering the different data marts. Finally, the authors provide screenshots of the CASE tools that support the approach, and a case study to show its benefits.
机译:为了定制数据仓库,许多组织开发了针对特定部门或业务流程的具体数据集市。但是,由于在将这些存储库设计为完整解决方案时涉及到技术和组织方面的挑战,因此这些数据集市的集成开发是许多组织面临的一个开放问题。在本文中,作者提出了一种设计方法,该方法利用用户需求以集成的方式构建公司数据仓库和数据集市。该方法将信息需求链接到使用面向目标的需求工程引出的特定数据集市,然后通过模型驱动的工程技术将其自动转换为相应数据存储库的实现。作者提供了两个UML概要文件,这些概要文件集成了数据仓库和数据集市的设计以及一组QVT转换,以使该过程自动化。这种方法的优势在于,可以从数据仓库项目的早期开发阶段捕获用户需求,以考虑不同的数据集市,将其自动转换为整个数据仓库平台。最后,作者提供了支持该方法的CASE工具的屏幕截图,并提供了一个案例研究来显示其好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号