首页> 外文期刊>Journal on Data Semantics >The Role of Common-Sense Knowledge in Assessing Semantic Association
【24h】

The Role of Common-Sense Knowledge in Assessing Semantic Association

机译:常识知识在评估语义联想中的作用

获取原文
获取原文并翻译 | 示例

摘要

Natural language processing techniques often aim at automatically extracting semantics from texts. However, they usually need some available semantic knowledge contained in dictionaries and resources such as WordNet, Wikipedia, and FrameNet. In this respect, there is a large literature about the creation of novel semantic resources as well as attempts to integrate existing ones. In this context, we here focus on common-sense knowledge, which shows to have interesting characteristics as well as challenging issues such as ambiguity, vagueness, and inconsistency. In this paper, we make use of a large-scale and crowdsourced common-sense knowledge base, i.e., ConceptNet, to qualitatively evaluate its role in the perception of semantic association among word's. We then propose an unsupervised method to disambiguate and integrate ConceptNet instances into WordNet, demonstrating how the enriched resource improves the recognition of semantic association. Finally, we describe a novel approach to label semantically associated words by exploiting the functional and behavioral information usually contained in common sense, demonstrating how this enhances the explanation (and the use) of relatedness and similarity with non-numeric information.
机译:自然语言处理技术通常旨在自动从文本中提取语义。但是,他们通常需要词典和资源(例如WordNet,Wikipedia和FrameNet)中包含的一些可用语义知识。在这方面,有大量关于新颖语义资源的创建以及整合现有语义资源的尝试的文献。在这种情况下,我们将重点放在常识性知识上,这些常识具有有趣的特征以及具有挑战性的问题,例如歧义性,模糊性和不一致性。在本文中,我们利用大规模的众包常识知识库(即ConceptNet)来定性评估其在感知单词间语义关联中的作用。然后,我们提出了一种无监督的方法来消除ConceptNet实例的歧义并将其集成到WordNet中,从而说明了丰富的资源如何改善语义关联的识别。最后,我们通过利用通常包含在常识中的功能和行为信息,描述了一种标记语义相关单词的新颖方法,展示了该方法如何增强与非数字信息的相关性和相似性的解释(和使用)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号