首页> 外文期刊>Journal of Crystal Growth >Epitaxial growth and characterization of InAs/GaSb and InAs/InAsSb type-Ⅱsuperlattices on GaSb substrates by metalorganic chemical vapor deposition for long wavelength infrared photodetectors
【24h】

Epitaxial growth and characterization of InAs/GaSb and InAs/InAsSb type-Ⅱsuperlattices on GaSb substrates by metalorganic chemical vapor deposition for long wavelength infrared photodetectors

机译:用于长波长红外光电探测器的金属有机化学气相沉积在GaSb衬底上InAs / GaSb和InAs / InAsSb II型超晶格的外延生长和表征

获取原文
获取原文并翻译 | 示例
           

摘要

We report on the epitaxial growth and characterization of InAs/GaSb and InAs/InAsSb type-II superlattices (T2SLs) on GaSb substrates by metalorganic chemical vapor deposition. For InAs/GaSb strained T2SLs, interfacial layers were introduced at the superlattice interfaces to compensate the tensile strain and hence to improve the overall material quality of the superlattice structures. The optimal morphology and low strain was achieved via a combined interfacial layer scheme with 1 monolayer (ML) InAsSb + 1ML InGaSb layers. In contrast, the InAs/InAsSb strain-balanced T2SLs allow for a relatively easy strain management and simple precursor flow switching scheme while maintaining device-quality materials. Surface root mean square roughness of 0.108 nm and a nearly zero net strain were obtained, with effective bandgaps of 147 and 94 meV determined for two sets of InAs/InAsSb strain-balanced T2SLs.
机译:我们报告了通过金属有机化学气相沉积在GaSb衬底上InAs / GaSb和InAs / InAsSb II型超晶格(T2SLs)的外延生长和表征。对于InAs / GaSb应变T2SL,在超晶格界面处引入了界面层,以补偿拉伸应变,从而改善了超晶格结构的整体材料质量。通过具有1个单层(ML)InAsSb + 1ML InGaSb层的组合界面层方案,可以获得最佳的形貌和低应变。相反,InAs / InAsSb应变平衡的T2SL允许相对容易的应变管理和简单的前驱流切换方案,同时保持器件质量的材料。获得的表面均方根粗糙度为0.108 nm,净应变几乎为零,对于两组InAs / InAsSb应变平衡T2SL,确定的有效带隙为147和94 meV。

著录项

  • 来源
    《Journal of Crystal Growth》 |2011年第1期|p.92-96|共5页
  • 作者单位

    Center for Compound Semiconductors and School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, CA 30332-0250, USA;

    Center for Compound Semiconductors and School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, CA 30332-0250, USA;

    Center for Compound Semiconductors and School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, CA 30332-0250, USA,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA;

    Center for Photonics Innovation and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA;

    Center for Photonics Innovation and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA;

    Center for Photonics Innovation and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA;

    Center for Photonics Innovation and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA;

    Micro- and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 6)801, USA;

    Micro- and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 6)801, USA;

    Micro- and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 6)801, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    A1. Low dimensional structures; A3. Metalorganic vapor phase epitaxy; B2. Semiconducting Ⅲ-Ⅴ materials; B3. Infrared devices;

    机译:A1。低维结构;A3。金属有机气相外延;B2。半导体Ⅲ-Ⅴ材料;B3。红外线设备;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号