首页> 外文期刊>Journal of Cryptology >Weak Locking Capacity of Quantum Channels Can be Much Larger Than Private Capacity
【24h】

Weak Locking Capacity of Quantum Channels Can be Much Larger Than Private Capacity

机译:量子通道的弱锁定能力可能比私有能力大得多

获取原文
获取原文并翻译 | 示例
           

摘要

We show that it is possible for the so-called weak locking capacity of a quantum channel (Guha et al. in Phys Rev X 4:011016, 2014) to be much larger than its private capacity. Both reflect different ways of capturing the notion of reliable communication via a quantum system while leaking almost no information to an eavesdropper; the difference is that the latter imposes an intrinsically quantum security criterion whereas the former requires only a weaker, classical condition. The channels for which this separation is most straightforward to establish are the complementary channels of classical-quantum (cq-)channels and, hence, a subclass of Hadamard channels. We also prove that certain symmetric channels (related to photon number splitting) have positive weak locking capacity in the presence of a vanishingly small pre-shared secret, whereas their private capacity is zero. These findings are powerful illustrations of the difference between two apparently natural notions of privacy in quantum systems, relevant also to quantum key distribution: the older, na < ve one based on accessible information, contrasting with the new, composable one embracing the quantum nature of the eavesdropper's information. Assuming an additivity conjecture for constrained minimum output R,nyi entropies, the techniques of the first part demonstrate a single-letter formula for the weak locking capacity of complements to cq-channels, coinciding with a general upper bound of Guha et al. for these channels. Furthermore, still assuming this additivity conjecture, this upper bound is given an operational interpretation for general channels as the maximum weak locking capacity of the channel activated by a suitable noiseless channel.
机译:我们表明,量子通道的所谓弱锁定能力(Guha等人,Phys Rev X 4:011016,2014)有可能比其私有能力大得多。两者都反映了通过量子系统捕获可靠通信概念的不同方式,同时几乎没有信息泄漏给窃听者。不同之处在于,后者强加了本质上的量子安全性标准,而前者只需要一个较弱的经典条件。最容易建立这种分离的通道是经典量子(cq-)通道的互补通道,因此是Hadamard通道的子类。我们还证明了某些对称信道(与光子数分裂有关)在正逐渐消失的小预共享秘密存在的情况下具有正的弱锁定能力,而其私有容量为零。这些发现是对量子系统中两个表面上自然的隐私概念之间差异的有力说明,这些概念也与量子密钥分配有关:较旧的,基于可访问信息的纯朴的,与新的,可组合的,包含量子本质的信息形成对比。窃听者的信息。假设约束最小输出R,nyi熵的可加性猜想,第一部分的技术证明了单字母公式表示cq通道补码的弱锁定能力,与Guha等人的一般上限一致。这些渠道。此外,仍假设该可加性猜想,此上限给出了一般通道的操作解释,即由合适的无噪声通道激活的通道的最大弱锁定能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号