首页> 外文期刊>Journal of Contaminant Hydrology >Modelling gas-phase recovery of volatile organic compounds during in situ thermal treatment
【24h】

Modelling gas-phase recovery of volatile organic compounds during in situ thermal treatment

机译:原位热处理期间挥发性有机化合物的造型气相回收

获取原文
获取原文并翻译 | 示例
           

摘要

In situ thermal treatment (ISTT) technologies can be used to remove mass from non-aqueous phase liquid (NAPL) source zones. Ensuring the vaporization of NAPL and the capture of vapors are crucial, and numerical models are useful for understanding the processes that affect performance to help improve design and operation. In this paper, a two-dimensional model that combines a continuum approach based on finite difference for heat transfer with a macroscopic invasion percolation (macro-IP) approach for gas migration was developed to simulate thermal conductive heating (TCH) applications at the field-scale. This approach simulates heat transport and gas migration, but is different than a traditional continuum multiphase approach. Mass recovery for 60 randomly generated realizations under three degrees of heterogeneity of the permeability field were simulated. The mass recovery curves had an overall similar shape for the various permeability fields. However, a wider range of completion times was observed for domains with a higher permeability variance. Results also showed that NAPL pools that were highly saturated, deep, and away from the heaters needed more heating time to be depleted, and that total NAPL mass was not a good indicator of completion time. The completion time was positively correlated with the maximum value of the mixed spatial moment of NAPL saturation about the heaters in the lateral and vertical direction, and the NAPL pool with the highest moment could increase the heating time by as much as 35%. This effect was most notable in simulations with a high permeability variance and suggests the potential to reduce heating time by locating the largest NAPL pools and placing TCH heaters accordingly.
机译:原位热处理(ISTT)技术可用于除去非水相液(NaPL)源区的质量。确保Napl的蒸发和蒸汽的捕获至关重要,数值模型可用于理解影响性能的过程,以帮助改善设计和操作。在本文中,开发了一种基于用于气体迁移的宏观侵袭(宏-IP)方法的基于传热的有限差异的连续方法的二维模型是开发出气体迁移的方法,以模拟现场的导热加热(TCH)应用 - 规模。这种方法模拟热传输和气体迁移,但不同于传统的连续式多相方法。模拟了60个在渗透场的三个异质性下随机产生的实现的质量回收率。质量恢复曲线对于各种渗透性场具有总体相似的形状。然而,对于具有较高渗透性方差的结构域观察到更广泛的完成时间。结果还表明,NaPL池高饱和,深,远离加热器的池需要更多的加热时间来耗尽,并且总NaPL质量不是完整时间的良好指标。完成时间与NaPL饱和的最大值与横向和垂直方向上的加热器的混合空间矩的最大值呈正相关,并且具有最高力矩的NAPL池可以将加热时间增加多达35%。这种效果最显着,具有高渗透性方差,并表明通过定位最大的NAPL池并相应地放置Tch加热器来减少加热时间的可能性。

著录项

  • 来源
    《Journal of Contaminant Hydrology》 |2020年第10期|103698.1-103698.7|共7页
  • 作者单位

    Queens Univ Dept Civil Engn Kingston ON Canada;

    Queens Univ Dept Civil Engn Kingston ON Canada;

    Queens Univ Dept Civil Engn Kingston ON Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号