首页> 外文期刊>Journal of Computing and Information Technology >Training a Genre Classifier for Automatic Classification of Web Pages
【24h】

Training a Genre Classifier for Automatic Classification of Web Pages

机译:训练类型分类器以对网页进行自动分类

获取原文
获取原文并翻译 | 示例

摘要

This paper presents experiments on classifying web pages by genre. Firstly, a corpus of 1 539 manually labeled web pages was prepared. Secondly, 502 genre features were selected based on the literature and the observation of the corpus. Thirdly, these features were extracted from the corpus to obtain a data set. Finally, two machine learning algorithms, one for induction of decision trees (J48) and one ensemble algorithm (bagging), were trained and tested on the data set. The ensemble algorithm achieved on average 17% better precision and 1.6% better accuracy, but slightly worse recall; F-measure did not vary significantly. The results indicate that classification by genre could be a useful addition to search engines.
机译:本文提出了按类别对网页进行分类的实验。首先,准备了1 539个手动标记的网页的语料库。其次,根据文献和语料库的观察选择了502个体裁特征。第三,从语料库中提取这些特征以获得数据集。最后,在数据集上训练和测试了两种机器学习算法,一种用于决策树的归纳(J48),另一种是集成算法(装袋)。集成算法的平均准确率提高了17%,准确度提高了1.6%,但召回率略差; F测度变化不大。结果表明,按类型进行分类可能是对搜索引擎的有用补充。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号