首页> 外文期刊>Journal of Computing and Information Science in Engineering >Hierarchical Optimization-Based Approach for Two-Dimensional Rectangular Layout Design Problems
【24h】

Hierarchical Optimization-Based Approach for Two-Dimensional Rectangular Layout Design Problems

机译:基于分层优化的二维矩形布局设计问题方法

获取原文
获取原文并翻译 | 示例

摘要

In this study, we propose a hierarchical optimization-based approach for two-dimensional rectangular layout design problems. Decomposition-based optimization has been a key approach for complicated design problems in multidisciplinary design optimization (MDO), but the main focus has been design problems where the design variables are continuous. On the other hand, various approaches have been developed for layout design based on evolutionary algorithms, e.g., simulated annealing (SA) and genetic algorithms (GAs) which can handle its combinatorial nature in an effective manner. In the present study, we aim to introduce a new paradigm by combining decomposition-based optimization and evolutionary algorithms for solving complicated layout design problems. In this approach, the original layout problem is decomposed into the top-level layout problem and a set of sublevel layout problems, where the layouts obtained from the sublevel problems are used as components of the top-level problem. Since the preferable shapes of these components are unclear when the sublevel problems are solved, a set of Pareto optima are provided in the sublevel problems and these solutions are used as candidate components in the top-level problem. A computational design algorithm is developed based on this approach, which represents the layout topology with sequence pair and the shape of each subsystem or component with the aspect ratio, and they are optimized using GAs. The Pareto optimality of the sublevels is handled by multi-objective GAs, and a set of Pareto optima is generated simultaneously. The top-level and sublevel layout problems are coordinated via the exchange of preferable ranges for the shapes and layout. This approach was implemented and applied to an example problem to demonstrate its performance and capability.
机译:在这项研究中,我们针对二维矩形布局设计问题提出了一种基于分层优化的方法。基于分解的优化一直是解决多学科设计优化(MDO)中复杂设计问题的关键方法,但主要关注点是设计变量连续的设计问题。另一方面,基于进化算法,例如模拟退火(SA)和遗传算法(GA),已经开发出各种布局设计方法,这些方法可以有效地处理其组合性质。在本研究中,我们旨在通过结合基于分解的优化和进化算法来解决复杂的布局设计问题,从而引入一种新的范例。在这种方法中,将原始布局问题分解为顶层布局问题和一组子级布局问题,其中将从子级问题获得的布局用作顶层问题的组件。由于在解决子级问题时这些组件的最佳形状尚不清楚,因此在子级问题中提供了一组帕累托最优,并且这些解决方案用作顶层问题中的候选组件。基于这种方法开发了一种计算设计算法,该算法用序列对表示布局拓扑,并用长宽比表示每个子系统或组件的形状,并使用GA对其进行优化。子级的帕累托最优由多目标GA处理,同时生成一组帕累托最优。顶层和子层布局问题是通过交换形状和布局的最佳范围来协调的。该方法已实现并应用于示例问题,以演示其性能和功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号