首页> 外文期刊>Journal of Computing and Information Science in Engineering >Facial Expression Analysis for Content-Based Video Retrieval
【24h】

Facial Expression Analysis for Content-Based Video Retrieval

机译:基于内容的视频检索的面部表情分析

获取原文
获取原文并翻译 | 示例

摘要

In this work, we propose a technique for facial expression recognition to bridge the semantic gap among the features that can be extracted in a content-based video retrieval system. The paper aims to provide accurate and reliable facial expression recognition of a dominant person in video frames using deterministic binary cellular automata (DBCA). Both geometric and appearance-based features are used. Efficient dimension reduction techniques for face detection and recognition are applied. Using the facial action coding system (FACS), one can code automatically nearly any anatomically possible facial expression, deconstructing it into what are called as action units (AUs). By employing two-dimensional deterministic binary cellular automaton systems (2D-DBCA), a scheme is developed to classify the facial expressions representing various emotions to retrieve video scenes/shots. Extensive experiments on Cohn-Kanade database, Yale database, and large movie videos show the superiority of the proposed method, in comparison with support vector machines (SVMs), hidden Markov models (HMMs), and neural network (NN) classifiers.
机译:在这项工作中,我们提出了一种面部表情识别技术,以弥合可以在基于内容的视频检索系统中提取的特征之间的语义鸿沟。本文旨在使用确定性二进制元胞自动机(DBCA)为视频帧中的优势人物提供准确可靠的面部表情识别。同时使用了基于几何和基于外观的特征。应用了用于面部检测和识别的高效降维技术。使用面部动作编码系统(FACS),可以自动编码几乎任何解剖学上可能的面部表情,将其分解为所谓的动作单位(AU)。通过使用二维确定性二进制元胞自动机系统(2D-DBCA),开发了一种方案来对代表各种情绪的面部表情进行分类,以检索视频场景/镜头。与支持向量机(SVM),隐马尔可夫模型(HMM)和神经网络(NN)分类器相比,在Cohn-Kanade数据库,Yale数据库和大型电影视频上进行的大量实验证明了该方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号