【24h】

Partial Bi-Invariance of SE(3) Metrics

机译:SE(3)度量的部分双不变性

获取原文
获取原文并翻译 | 示例

摘要

In a flurry of articles in the mid to late 1990s, various metrics for the group of rigid-body motions, SE(3), were introduced for measuring distance between any two reference frames or rigid-body motions. During this time, it was shown that one can choose a smooth distance function that is invariant under either all left shifts or all right shifts, but not both. For example, if one defines the distance between two reference frames to be an appropriately weighted Frobenius norm of the difference of the corresponding homogeneous transformation matrices, this will be invariant under left shifts by arbitrary rigid-body motions. However, this is not the full picture-other invariance properties exist. Though the Frobenius norm is not invariant under right shifts by arbitrary rigid-body motions, for an appropriate weighting it is invariant under right shifts by pure rotations. This is also true for metrics based on the Lie-theoretic logarithm. This paper goes further-to investigate the full invariance properties of distance functions on SE(3), clarifying the full subsets of motions under which both left and right invariance is possible.
机译:在1990年代中期到后期的一系列文章中,引入了一组针对刚体运动的度量SE(3),以测量任意两个参考系或刚体运动之间的距离。在这段时间里,事实表明,人们可以选择一个平滑的距离函数,该函数在所有左移或所有右移下均不变,但不能同时在两者之间不变。例如,如果将两个参考系之间的距离定义为相应的均质变换矩阵之差的适当加权的Frobenius范数,则在左移的情况下通过任意刚体运动这将是不变的。但是,这不是完整的图片,其他不变性也存在。尽管Frobenius范数在任意硬体运动的右移下不是不变的,但对于适当的权重,它在纯旋转的右移下不变。对于基于李理论对数的度量标准也是如此。本文进一步研究了SE(3)上距离函数的完全不变性,阐明了运动的全部子集,在该子集下,左右不变都是可能的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号