首页> 外文期刊>Journal of Computing and Information Science in Engineering >A Three-Dimensional Diffusion Filtering Model Establishment and Analysis for Point Cloud Intensity Noise
【24h】

A Three-Dimensional Diffusion Filtering Model Establishment and Analysis for Point Cloud Intensity Noise

机译:点云强度噪声的三维扩散滤波模型建立与分析

获取原文
获取原文并翻译 | 示例

摘要

To improve the quality of point cloud data, as well as maintain edge and detail information in the course of filtering intensity data, a three-dimensional (3D) diffusion filtering equation based on the general principle of diffusion filtering is established in this paper. Moreover, we derive theoretical formulas for the scale parameter and maximum iteration number and achieve self-adaptive denoising, fine control of the point cloud filtering, and accurate prediction of the diffusion convergence. Through experiments with three types of typical point cloud intensity data, the theoretical formulas for the scale parameter and iteration number are verified. Comparative experiments with point cloud data of different types show that the 3D diffusion filtering method has significant denoising and edge-preserving abilities. Compared with the traditional median filtering algorithm, the signal-to-noise ratio (SNR) of the point cloud after filtering is increased by an average of 10% and above, with a maximum value of 40% and above.
机译:为了提高点云数据的质量,并在滤波强度数据的过程中保持边缘信息和细节信息,建立了基于扩散滤波总原理的三维(3D)扩散滤波方程。此外,我们推导了比例参数和最大迭代次数的理论公式,实现了自适应降噪,对点云滤波的精细控制以及对扩散收敛的准确预测。通过对三种典型点云强度数据的实验,验证了尺度参数和迭代次数的理论公式。使用不同类型的点云数据进行的比较实验表明,3D扩散滤波方法具有显着的降噪和边缘保留能力。与传统的中值滤波算法相比,滤波后的点云的信噪比平均提高10%以上,最大值达到40%以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号