首页> 外文期刊>Journal of Computing and Information Science in Engineering >Thesaurus-Guided Text Analytics Technique for Capability-Based Classification of Manufacturing Suppliers
【24h】

Thesaurus-Guided Text Analytics Technique for Capability-Based Classification of Manufacturing Suppliers

机译:词库引导的文本分析技术,用于基于能力的制造供应商分类

获取原文
获取原文并翻译 | 示例

摘要

Manufacturing capability (MC) analysis is a necessary step in the early stages of supply chain formation. In the contract manufacturing industry, companies often advertise their capabilities and services in an unstructured format on the company website. The unstructured capability data usually portray a realistic view of the services a supplier can offer. If parsed and analyzed properly, unstructured capability data can be used effectively for initial screening and characterization of manufacturing suppliers specially when dealing with a large pool of suppliers. This work proposes a novel framework for capability-based supplier classification that relies on the unstructured capability narratives available on the suppliers' websites. Four document classification algorithms, namely, support vector machine (SVM ), Naïve Bayes, random forest, and K-nearest neighbor (KNN) are used as the text classification techniques. One of the innovative aspects of this work is incorporating a thesaurus-guided method for feature selection and tokenization of capability data. The thesaurus contains the formal and informal vocabulary used in the contract machining industry for advertising manufacturing capabilities. A web-based tool is developed for the generation of the concept vector model associated with each capability narrative and extraction of features from the input documents. The proposed supplier classification framework is validated experimentally through forming two capability classes, namely, heavy component machining and difficult and complex machining, based on real capability data. It was concluded that thesaurus-guided method improves the precision of the classification process.
机译:制造能力(MC)分析是供应链形成初期的必要步骤。在合同制造行业中,公司经常在公司网站上以非结构化的格式宣传其能力和服务。非结构化的能力数据通常描绘了供应商可以提供的服务的真实视图。如果进行了正确的分析和分析,则非结构化能力数据可以有效地用于制造供应商的初始筛选和特征化,尤其是在与大量供应商打交道时。这项工作提出了一个基于能力的供应商分类的新颖框架,该框架依赖于供应商网站上可用的非结构化能力叙述。四种文档分类算法,即支持向量机(SVM),朴素贝叶斯,随机森林和K近邻(KNN)被用作文本分类技术。这项工作的创新方面之一是采用词库引导的方法进行功能数据的特征选择和标记化。同义词库包含合同加工行业中用于广告制造能力的正式和非正式词汇。开发了一个基于Web的工具,用于生成与每个功能叙述关联的概念向量模型,并从输入文档中提取特征。所提议的供应商分类框架通过基于真实能力数据形成两个能力类别(即重型零件加工和难加工和复杂加工)进行了实验验证。结论是词库引导的方法提高了分类过程的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号