首页> 外文期刊>Journal of Computing and Information Science in Engineering >Hybrid Modeling Approach for Melt-Pool Prediction in Laser Powder Bed Fusion Additive Manufacturing
【24h】

Hybrid Modeling Approach for Melt-Pool Prediction in Laser Powder Bed Fusion Additive Manufacturing

机译:激光粉末融合添加剂制造中熔融池预测的混合模拟方法

获取原文
获取原文并翻译 | 示例

摘要

Multi-scale, multi-physics, computational models are a promising tool to provide detailed insights to understand the process-structure-property-performance relationships in additive manufacturing (AM) processes. To take advantage of the strengths of both physics-based and data-driven models, we propose a novel, hybrid modeling framework for laser powder bed fusion (L-PBF) process. Our unbiased model-integration method combines physics-based, simulation data, and measurement data for approaching a more accurate prediction of melt-pool width. Both a high-fidelity computational fluid dynamics (CFD) model and experiments utilizing optical images are used to generate a combined dataset of melt-pool widths. From this aggregated data set, a hybrid model is developed using data-driven modeling techniques, including polynomial regression and Kriging methods. The performance of the hybrid model is evaluated by computing the average relative error and comparing it with the results of the simulations and surrogate models constructed from the original CFD model and experimental measurements. It is found that the proposed hybrid model performs better in terms of prediction accuracy and computational time. Future work includes a conceptual introduction to the use of an AM ontology to support improved model and data selection when constructing hybrid models. This study can be viewed as a significant step toward the use of hybrid models as predictive models with improved accuracy and without the sacrifice of speed.
机译:多尺度,多物理,计算模型是一个有前途的工具,可以详细了解,了解添加剂制造(AM)过程中的过程结构性质性能关系。为了利用基于物理和数据驱动的模型的优势,我们提出了一种用于激光粉末融合(L-PBF)工艺的新型混合建模框架。我们的非偏见模型集成方法结合了基于物理的,仿真数据和测量数据,以接近更准确的熔池池宽度预测。利用光学图像的高保真计算流体动力学(CFD)模型和实验既用于生成熔融池宽度的组合数据集。从该聚合数据集中,使用数据驱动的建模技术开发混合模型,包括多项式回归和克里格化方法。通过计算平均相对误差并将其与由原始CFD模型和实验测量构成的模拟结果进行比较来评估混合模型的性能。发现所提出的混合模型在预测准确性和计算时间方面更好地执行。未来的工作包括在构建混合模型时支持AM本体的使用概念性介绍,以支持改进的模型和数据选择。该研究可以被视为朝着使用混合模型作为预测模型的重要步骤,以提高精度,无需迅速牺牲。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号