首页> 外文期刊>Journal of Computing and Information Science in Engineering >Optimal Sequence Planning for Robotic Sorting of Recyclables From Source- Segregated Municipal Solid Waste
【24h】

Optimal Sequence Planning for Robotic Sorting of Recyclables From Source- Segregated Municipal Solid Waste

机译:源隔离城市固体废物循环循环机器人排序的最佳序列规划

获取原文
获取原文并翻译 | 示例

摘要

Sorting of recyclables from source-segregated municipal solid waste (MSW) stream is an essential step in the recycling chain in a material recovery facility (MRF) for waste management. Manual sorting of recyclables in an MRF is a highly hazardous operation for human health as well as time-consuming. Application of robotics for automated waste sorting can alleviate these problems to a large extent. The total sorting time depends upon the pick-and-place (PAP) sequence used in a robotic sorting system. In this context, the generation of optimal PAP sequence plan is a key challenge considering that it cannot be solved by an exhaustive search due to the combinatorial explosion of the search space. This paper reports an approach for generating optimal PAP sequence plan for robotic sorting of recyclables from source-segregated MSW stream in a system equipped with thermal-imaging technique. The PAP sequence generation is formulated as an optimization problem wherein the objective is to minimize the total sorting time. The formulated problem has been solved using a genetic algorithm (GA)-based approach. Numerical simulations as well as physical experiments using a 6 degrees-of-freedom (DOF) articulated manipulator have been performed to test and validate the developed optimal sequence generation algorithm. Results revealed an improvement of up to 4.28% speedup in total sorting time over that of randomly generated sequences. It is envisaged that the developed approach can substantially improve the sorting performance in an MRF.
机译:从源隔离的市政固体废物(MSW)流中的再循环排序是用于废物管理的材料回收设施(MRF)中的回收链中的基本步骤。手动分类MRF中的再循环是人类健康的高度危险操作以及耗时。自动化废物分类的机器人应用可以在很大程度上缓解这些问题。总分选时间取决于机器人分类系统中使用的拾取和放置(PAP)序列。在这种情况下,考虑到由于搜索空间的组合爆炸而无法通过详尽的搜索来解决它的主要挑战是一个关键挑战。本文报道了一种方法,用于从配备出热成像技术的系统中的源隔离MSW流产生最佳PAP序列计划的方法。 PAP序列生成被配制成优化问题,其中目标是最小化总分选时间。使用基于遗传算法(GA)的方法来解决配制的问题。已经进行了数值模拟以及使用6度自由度(DOF)铰接式操纵器的物理实验以测试和验证所开发的最佳序列生成算法。结果表明,在随机生成的序列的总分选时间中的总分选时间增加了4.28%的增速。设想,开发方法可以大大提高MRF中的分类性能。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号