首页> 外文期刊>Journal of computer and system sciences >On the complexity of division and set joins in the relational algebra
【24h】

On the complexity of division and set joins in the relational algebra

机译:关系代数中除法和集联接的复杂性

获取原文
获取原文并翻译 | 示例

摘要

We show that any expression of the relational division operator in the relational algebra with union, difference, projection, selection, constant-tagging, and joins, must produce intermediate results of quadratic size. To prove this result, we show a dichotomy theorem about intermediate sizes of relational algebra expressions (they are either all linear, or at least one is quadratic), and we link linear relational algebra expressions to expressions using only semijoins instead of joins.
机译:我们证明,关系代数在关系代数中具有并集,差,投影,选择,常量标记和连接的任何表达式都必须产生二次大小的中间结果。为了证明这一结果,我们展示了一个关于关系代数表达式的中间大小的二分法定理(它们要么全部是线性的,要么至少一个是平方的),并且我们仅使用半联接而不是联接将线性关系代数表达式链接到表达式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号