首页> 外文期刊>Journal of computational science >Diagnosis of lung cancer using hybrid deep neural network with adaptive sine cosine crow search algorithm
【24h】

Diagnosis of lung cancer using hybrid deep neural network with adaptive sine cosine crow search algorithm

机译:用自适应正弦余弦乌龟乌龟乌龟搜索算法诊断肺癌

获取原文
获取原文并翻译 | 示例

摘要

Lung cancer is a leading cause of cancer related deaths in all around the world. The identification of lung nodules is the significant step in the diagnosis of earlier lung cancer which can develop into a tumor. In the lung disease analysis, valuable information is provided by the Computed Tomography (CT) scan. The key objective is to find the malignant lung nodules and categorize the lung cancer whether it is benign or malignant. In this paper, propose a diagnosis of lung cancer using hybrid deep neural network with adaptive optimization algorithm. Initially, the preprocessing stage is performed using the fast non local means (FNLM) filter. For the segmentation process, the Masi entropy based multilevel thresholding using salp swarm algorithm (MasiEMT-SSA) is used to segment the cancer nodule from the lung images. Using the grey-level run length matrix (GLRLM), different features are mined in the feature extraction. The binary grasshopper optimization algorithm (BGOA) is applied to select the optimum features for the feature selection (FS) process. Then the selected features are classified using the hybrid classifier named as deep neural network with adaptive sine cosine crow search(DNN-ASCCS) algorithm. The proposed hybrid classifier accurately detects the lung cancer. The proposed (DNN-ASCCS) is implemented by MATLAB using the Lung Image Database Consortium and Image Database Resource Initiative (LIDCIDRI) datasets. The different performance metrics are evaluated and related to the existing classifiers and different state-of-art approaches. The simulation outcomes verified that the developed scheme is achieved a high classification accuracy (99.17 %) compared to other approaches.
机译:肺癌是世界各地癌症相关死亡的主要原因。肺结核的鉴定是患早期肺癌的诊断的重要步骤,其可以发展成肿瘤。在肺病分析中,通过计算的断层扫描(CT)扫描提供了有价值的信息。关键目标是找到恶性肺结节并对肺癌进行分类,无论是良性还是恶性。本文采用具有自适应优化算法的混合深神经网络诊断肺癌。最初,使用快速非本地装置(FNLM)滤波器进行预处理阶段。对于分割过程,使用SALP群算法(MASIEMT-SSA)的基于MASI熵的多级阈值阈值,用于将癌细胞与肺图像分段。使用灰度运行长度矩阵(GLRLM),在特征提取中开采不同的功能。应用二元蚱蜢优化算法(BGoA)以选择特征选择(FS)过程的最佳功能。然后,使用名为Deep神经网络的混合分类器分类所选功能,具有自适应正弦余弦乌龟乌龟搜索(DNN-ASCCS)算法。所提出的混合分类器精确地检测肺癌。所提出的(DNN-ASCC)由Matlab使用肺图像数据库联盟和图像数据库资源计划(Lidcidri)数据集来实现。评估不同的性能指标并与现有的分类器和不同的最先进方法相关。仿真结果证实,与其他方法相比,开发方案具有高分类精度(99.17%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号