首页> 外文期刊>Journal of computational science >Communication-efficient hierarchical distributed optimization for multi-agent policy evaluation
【24h】

Communication-efficient hierarchical distributed optimization for multi-agent policy evaluation

机译:用于多代理策略评估的通信高效的分布式优化

获取原文
获取原文并翻译 | 示例

摘要

Policy evaluation problems in multi-agent reinforcement learning (MARL) have attracted growing interest recently. In this setting, agents collaborate to learn the value of a given policy with private local rewards and jointly observed state-action pairs. However, existing fully decentralized algorithms treat each agent equally, without considering the communication structure of the agents over a given network, and the corresponding effects on communication and computation efficiency. In this paper, we propose a hierarchical distributed algorithm that differentiates the roles of each of the agents during the evaluation process. This method allows us to freely choose various mixing schemes (and corresponding mixing matrices that are not necessarily symmetric or doubly stochastic), in order to reduce the communication and computation cost, while still maintaining convergence at rates as fast as or even faster than the previous distributed algorithms. Theoretically, we show the proposed method, which contains existing distributed methods as a special case, achieves the same order of convergence rate as state-of-the-art methods. Extensive numerical experiments on real datasets verify that the performance of our approach indeed improves - sometimes significantly - over other advanced algorithms in terms of convergence and total communication efficiency.
机译:多智能体增强学习中的政策评估问题(Marl)最近引起了日益增长的利益。在此设置中,代理协作,以了解具有私有本地奖励和共同观察状态 - 行动对的给定策略的值。然而,现有的完全分散的算法同样地治疗每个试剂,而不考虑给定网络的代理通信结构,以及对通信和计算效率的相应影响。在本文中,我们提出了一种分布式分布式算法,其在评估过程中区分每个代理的角色。该方法允许我们自由选择各种混合方案(以及不一定对称或双随机)的各种混合方案(以及对应的混合矩阵,以降低通信和计算成本,同时仍然保持速率的收敛速度快或甚至比上一个更快地保持速度分布式算法。从理论上讲,我们显示了所提出的方法,其中包含现有的分布式方法作为特殊情况,实现了与最先进的方法相同的收敛速度顺序。实际数据集的广泛数值实验验证了我们的方法的性能确实改善 - 有时显着 - 在收敛和总通信效率方面的其他高级算法。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号