首页> 外文期刊>Journal of computational science >High-fidelity nonlinear low-order unstructured implicit finite-element seismic simulation of important structures by accelerated element-by-element method
【24h】

High-fidelity nonlinear low-order unstructured implicit finite-element seismic simulation of important structures by accelerated element-by-element method

机译:高保真非线性低阶非结构化非元素方法重要结构的隐含有限元仿真

获取原文
获取原文并翻译 | 示例

摘要

We enable large-scale high-fidelity finite-element seismic response simulations of important structures, that are expected to contribute towards improvement in seismic design verification, by reducing cost of the nonlinear dynamic unstructured low-order implicit finite-element method. Most of the computational cost of this method is involved in the element-by-element (EBE) method, which is a typical example of a "low computation/(data load or store)" kernel that appears in many applications that is not straightforward to attain performance on current computer systems. Therefore, special care based on computer science is required to make use of the potential of computer architecture and achieve fast analysis. In this study, we developed a kernel algorithm and implementation suitable for the target Arm v8.2-A scalable vector extension (SVE) CPU-based supercomputer Fugaku. 5.11and 8.69-fold speedup was attained by using the developed EBE kernel in a standard preconditioned conjugate gradient solver and a state-of-the-art SC14 massively parallel solver algorithm, respectively. Furthermore, by using the developed EBE kernel in the state-of-the-art solver, a 49 billion degrees-of-freedom high-fidelity seismic response analysis can be conducted in practical speed corresponding to 60,000 time-steps in half a day using Fugaku. The obtained insights are expected to be useful for accelerating other scientific computing methods with "low computation/(data load or store)" kernels.
机译:我们通过降低非线性动态非结构化低阶隐式有限元方法的成本,实现了重要结构的大规模高保真有限元地震反应模拟,这有助于改善地震设计验证的改进。该方法的大多数计算成本涉及由元素(EBE)方法,它是一个典型的例子,其“低计算/(数据加载或存储)”内核显示在许多不直接的应用程序中在当前计算机系统上实现性能。因此,需要基于计算机科学的特殊照顾需要利用计算机架构的潜力,实现快速分析。在本研究中,我们开发了适用于目标ARM V8.2-A可伸缩矢量扩展(SVE)CPU的超级计算机Fugaku的内核算法和实现。通过在标准的预处理共轭梯度求解器中使用开发的EBE内核实现了5.11和8.69倍的加速度分别获得了最先进的SC14大型平行求解器算法。此外,通过在最先进的求解器中使用开发的EBE内核,可以以实际速度进行490亿度的自由度的高保真地震反应分析,在半天内使用60,000次相应的时间步长Fugaku。预计所获得的见解将用于加速其他科学计算方法,其中包含“低计算/(数据加载或存储)”内核。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号