首页> 外文期刊>Journal of computational science >Rapid development of scalable scientific software using a process oriented approach
【24h】

Rapid development of scalable scientific software using a process oriented approach

机译:使用面向过程的方法快速开发可扩展的科学软件

获取原文
获取原文并翻译 | 示例

摘要

Scientific applications are often not written with multiprocessing, cluster computing or grid computing in mind. This paper suggests using Python and PyCSP to structure scientific software through Communicating Sequential Processes. Three scientific applications are used to demonstrate the features of PyCSP and how networks of processes may easily be mapped into a visual representation for better understanding of the process workflow. We show that for many sequential solutions, the difficulty in implementing a parallel application is removed. The use of standard multi-threading mechanisms such as locks, conditions and monitors is completely hidden in the PyCSP library. We show the three scientific applications: kNN, stochastic minimum search and McStas to scale well on multi-processing, cluster computing and grid computing platforms using PyCSP.
机译:科学应用程序通常不会考虑多处理,集群计算或网格计算。本文建议使用Python和PyCSP通过通信顺序过程来构造科学软件。使用三个科学应用程序来演示PyCSP的功能,以及如何轻松地将过程网络映射到可视化表示形式中,以更好地了解过程工作流程。我们表明,对于许多顺序解决方案,消除了实现并行应用程序的困难。 PyCSP库完全隐藏了对标准多线程机制(如锁,条件和监视器)的使用。我们展示了三种科学应用:kNN,随机最小搜索和McStas,它们可以在使用PyCSP的多处理,集群计算和网格计算平台上很好地扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号