首页> 外文期刊>Journal of computational science >Model selection for Discriminative Restricted Boltzmann Machines throughn meta-heuristic techniques
【24h】

Model selection for Discriminative Restricted Boltzmann Machines throughn meta-heuristic techniques

机译:通过元启发式技术选择判别受限玻尔兹曼机的模型

获取原文
获取原文并翻译 | 示例

摘要

Discriminative learning of Restricted Boltzmann Machines has been recently introduced as an alternative to provide a self-contained approach for both unsupervised feature learning and classification purposes. However, one of the main problems faced by researchers interested in such approach concerns with a proper selection of its parameters, which play an important role in its final performance. In this paper, we introduced some meta-heuristic techniques for this purpose, as well as we showed th
机译:最近引入了限制性玻尔兹曼机器的判别学习作为一种替代方法,它为无监督特征学习和分类目的提供了一种自包含的方法。然而,对这种方法感兴趣的研究人员面临的主要问题之一是其参数的正确选择,这对其最终性能起着重要作用。在本文中,我们为此目的介绍了一些元启发式技术,并展示了

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号