首页> 外文期刊>Journal of computational science >Large-scale machine learning based on functional networks for biomedical big data with high performance computing platforms
【24h】

Large-scale machine learning based on functional networks for biomedical big data with high performance computing platforms

机译:基于功能网络的大型机器学习和高性能计算平台,用于生物医学大数据

获取原文
获取原文并翻译 | 示例

摘要

Currently, the exponential growth of biomedical data along with the complexities of managing high dimensionality, imbalanced distribution, sparse attributes instigates a difficult challenge of effectively applying functional networks as a new large-scale predictive modeling in healthcare and biomedicine. This article proposes functional networks based on propensity score and Newton Raphson-maximum-likelihood optimizations as a new large-scale machine learning classifier to enhance its performance in addressing these challenges within big biomedical data. Different use-cases scenarios based on integrated phenotypic and genomics big biomedical data were proposed: real-life biomedical data, (i) optimal design of cancer chemotherapy; (ii) identify inpatient-admission of individuals with primary diagnosis of cancer; (iii) identify severe asthma exacerbation children using integrated phenotypic and SNP repository data; and (iv) mixture models simulation studies. Comparative studies were carried to compare the performance of the new paradigm versus the common state-of-the-art of machine learning, data mining, and statistics schemes. The results of performance of the new classifier with the most common classifiers on the four benchmark databases have been recorded in tables and graphs. The obtained results of the new classifier outperform most of existing state-of-the art statistical machine learning schemes with reliable and efficient performance. The new predictive modeling classifier is saving the computational time and having reliable performances along with future avenue for extension to deal with next generation sequencing data on high performance computing platforms. (C) 2015 Elsevier B.V. All rights reserved.
机译:当前,生物医学数据的指数增长以及管理高维度,分布不平衡,稀疏属性的复杂性,给有效地应用功能网络作为医疗保健和生物医学领域的新型大规模预测模型带来了艰巨的挑战。本文提出了一种基于倾向得分和牛顿拉弗森最大似然优化的功能网络,作为一种新型的大规模机器学习分类器,以增强其在应对大型生物医学数据中的这些挑战方面的性能。提出了基于综合表型和基因组学的大生物医学数据的不同用例场景:现实生活中的生物医学数据,(i)癌症化疗的优化设计; (ii)确定具有癌症初步诊断的个人入院; (iii)使用综合的表型和SNP资料库数据识别严重哮喘加重的儿童; (iv)混合模型模拟研究。进行了比较研究,以比较新范例的性能与通用的最新机器学习,数据挖掘和统计方案的性能。新分类器与四个基准数据库上最常见的分类器的性能结果已记录在表格和图表中。新分类器的结果以可靠和高效的性能优于大多数现有的最新统计机器学习方案。新的预测建模分类器节省了计算时间,并具有可靠的性能以及未来的扩展途径,可以在高性能计算平台上处理下一代测序数据。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号