首页> 外文期刊>Journal of computational science >A data-driven agent-based model of congestion and scaling dynamics of rapid transit systems
【24h】

A data-driven agent-based model of congestion and scaling dynamics of rapid transit systems

机译:基于数据驱动的基于代理的快速运输系统拥塞和扩展动态模型

获取原文
获取原文并翻译 | 示例

摘要

Investigating congestion in train rapid transit systems (RTS) in today's urban cities is a challenge compounded by limited data availability and difficulties in model validation. Here, we integrate information from travel smart card data, a mathematical model of route choice, and a full-scale agent-based model of the Singapore RTS to provide a more comprehensive understanding of the congestion dynamics than can be obtained through analytical modelling alone. Our model is empirically validated, and allows for close inspection of congestion and scaling dynamics. By adjusting our model, we can estimate the effective capacity of the RTS trains as well as replicate the penultimate station effect, where commuters travel backwards to the preceding station to catch a seat, sacrificing time for comfort. Using current data, the crowdedness in all 121 stations appears to be distributed log-normally. We find that increasing the current population (2 million) beyond a factor of approximately 10% leads to an exponential deterioration in service quality. We also show that incentivizing commuters to avoid the most congested hours can bring modest improvements to the service quality. Finally, our model can be used to generate simulated data for statistical analysis when such data are not empirically available, as is often the case. (C) 2015 Elsevier B.V. All rights reserved.
机译:在当今的城市中,研究火车快速运输系统(RTS)的交通拥堵是一项挑战,数据可用性有限且模型验证困难。在这里,我们整合了来自旅行智能卡数据的信息,路线选择的数学模型以及基于新加坡RTS的基于代理的全面模型,以提供对拥塞动态的更全面的了解,而不仅仅是单独通过分析建模即可获得。我们的模型经过经验验证,可以严密检查拥塞和扩展动态。通过调整模型,我们可以估算RTS列车的有效容量,并复制倒数第二站的效果,在这种情况下,通勤者向后行驶到前一站以坐下,从而节省了舒适时间。使用当前数据,所有121个电台的拥挤程度似乎呈对数正态分布。我们发现,将目前的人口(200万)增加到大约10%以上会导致服务质量呈指数级下降。我们还表明,激励通勤者避免最繁忙的时间会带来适度的服务质量改善。最后,当无法凭经验获得此类数据时(通常是这种情况),我们的模型可用于生成用于统计分析的模拟数据。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号