首页> 外文期刊>Journal of computational science >A parallel Non-Local means denoising algorithm implementation with OpenMP and OpenCL on Intel Xeon Phi Coprocessor
【24h】

A parallel Non-Local means denoising algorithm implementation with OpenMP and OpenCL on Intel Xeon Phi Coprocessor

机译:在Intel Xeon Phi协处理器上使用OpenMP和OpenCL进行并行的非本地均值降噪算法实现

获取原文
获取原文并翻译 | 示例

摘要

The Non-Local means (NLM) denoising algorithm calculates similarity weight between denoising pixels and searching area pixels by establishing similar functions. In texture denoising and edge region denoising domain, the Non-Local Means denoising algorithm performs better than many other existing denoising algorithms because it uses the redundant information of images. However, NLM algorithm has defect in speed for the huge computational amount. Recently, Intel Xeon Phi Coprocessor (based on Intel Many Integrated Core architecture, MIC) exhibits huge superiority in speedup computation. Therefore we design parallel algorithm strategies of OpenMP and OpenCL based on the serial NLM algorithm for MIC architecture, and conduct the experiment on CPU, GPU, and MIC with images of different sizes. The experiment suggests that the OpenMP-based NLM algorithm has better performance on Xeon Phi 7120 than on Xeon E5 2692 when the image size is greater than or equal to 1024*1024, the OpenCL-based NLM algorithm has better performance on Xeon Phi 7120 than on NVIDIA Kepler K2OM GPU, and OpenCL-based NLM algorithm performs a little better than OpenMP-based NLM algorithm when they both implemented on Intel Xeon Phi 7120. (C) 2016 Elsevier B.V. All rights reserved.
机译:非局部均值(NLM)去噪算法通过建立相似函数来计算去噪像素与搜索区域像素之间的相似度权重。在纹理去噪和边缘区域去噪领域,非局部均值去噪算法的性能优于许多其他现有的去噪算法,因为它使用了图像的冗余信息。但是,NLM算法由于运算量大而存在速度缺陷。最近,Intel Xeon Phi协处理器(基于Intel Many Integrated Core架构MIC)在加速计算方面显示出巨大的优势。因此,我们针对MIC体系结构设计了基于串行NLM算法的OpenMP和OpenCL并行算法策略,并在CPU,GPU和MIC上使用不同大小的图像进行了实验。实验表明,当图像大小大于或等于1024 * 1024时,基于OpenMP的NLM算法在Xeon Phi 7120上的性能要优于在Xeon E5 2692上,而在Xeon Phi 7120上,基于OpenCL的NLM算法的性能要优于Xeon Phi 7120。当它们都在Intel Xeon Phi 7120上实现时,基于NVIDIA Kepler K2OM GPU的基于OpenCL的NLM算法的性能要比基于OpenMP的NLM算法稍好。(C)2016 Elsevier BV保留所有权利。

著录项

  • 来源
    《Journal of computational science》 |2016年第3期|591-598|共8页
  • 作者单位

    Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Int Res Ctr Intelligent Percept & Computat, Xian 710071, Shaanxi Provinc, Peoples R China;

    Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Int Res Ctr Intelligent Percept & Computat, Xian 710071, Shaanxi Provinc, Peoples R China;

    Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Int Res Ctr Intelligent Percept & Computat, Xian 710071, Shaanxi Provinc, Peoples R China;

    Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Int Res Ctr Intelligent Percept & Computat, Xian 710071, Shaanxi Provinc, Peoples R China;

    Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Int Res Ctr Intelligent Percept & Computat, Xian 710071, Shaanxi Provinc, Peoples R China;

    Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Int Res Ctr Intelligent Percept & Computat, Xian 710071, Shaanxi Provinc, Peoples R China;

    Xidian Univ, Key Lab Intelligent Percept & Image Understanding, Minist Educ, Int Res Ctr Intelligent Percept & Computat, Xian 710071, Shaanxi Provinc, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Parallel algorithm; Non-Local means denoising; OpenMP; OpenCL; MIC;

    机译:并行算法;非局部均值去噪;OpenMP;OpenCL;MIC;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号