首页> 外文期刊>Journal of computational science >Workflow optimization of performance and quality of service for bioinformatics application in high performance computing
【24h】

Workflow optimization of performance and quality of service for bioinformatics application in high performance computing

机译:高性能计算中生物信息学应用的性能和服务质量的工作流优化

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, High Performance Computing (HPC) systems commonly used in bioinformatics, such as genome sequencing, incorporate multi-processor architectures. Typically, most bioinformatics applications are multi-threaded and dominated by memory-intensive operations, which are not designed to take full advantage of these HPC capabilities. Therefore, the application end-user is responsible for optimizing the application performance and improving scalability with various performance engineering concepts. Additionally, most of the HPC systems are operated in a multi-user (or multi-job) environment; thus, Quality of Service (QoS) methods are essential for balancing between application performance, scalability and system utilization. We propose a QoS workflow that optimizes the balancing ratio between parallel efficiency and system utilization. Accordingly, our proposed optimization workflow will advise the end user of a selection criteria to apply toward resources and options for a given application and HPC system architecture. For example, the BWA-MEM algorithm is a popular and modern algorithm for aligning human genome sequences. We conducted various case studies on BWA-MEM using our optimization workflow, and as a result compared to a state-of-the-art baseline, the application performance is improved up to 67%, scalability extended up to 200%, parallel efficiency improved up to 39% and overall system utilization increased up to 38%. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.orgilicensesiby-nc-nd/4.0/).
机译:如今,生物信息学中常用的高性能计算(HPC)系统(如基因组测序)结合了多处理器体系结构。通常,大多数生物信息学应用程序都是多线程的,并且以内存密集型操作为主导,而这些操作并非旨在充分利用这些HPC功能。因此,应用程序最终用户负责使用各种性能工程概念来优化应用程序性能并提高可伸缩性。此外,大多数HPC系统都在多用户(或多工作)环境中运行;因此,服务质量(QoS)方法对于平衡应用程序性能,可伸缩性和系统利用率至关重要。我们提出了一种QoS工作流,该工作流可优化并行效率与系统利用率之间的平衡比。因此,我们建议的优化工作流程将建议最终用户选择标准,以应用于给定应用程序和HPC系统架构的资源和选项。例如,BWA-MEM算法是一种流行的现代算法,用于比对人类基因组序列。我们使用优化工作流程对BWA-MEM进行了各种案例研究,结果与最先进的基准相比,应用程序性能提高了67%,可扩展性提高了200%,并行效率提高了高达39%,整体系统利用率提高了38%。 (C)2016作者。由Elsevier B.V.发布。这是CC BY-NC-ND许可下的开放获取文章(http://creativecommons.orgilicensesiby-nc-nd/4.0/)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号