首页> 外文期刊>Journal of computational science >Anomaly detection in earth dam and levee passive seismic data using support vector machines and automatic feature selection
【24h】

Anomaly detection in earth dam and levee passive seismic data using support vector machines and automatic feature selection

机译:使用支持向量机和自动特征选择对大坝和堤坝被动地震数据进行异常检测

获取原文
获取原文并翻译 | 示例

摘要

We investigate techniques for earth dam and levee health monitoring and automatic detection of anomalous events in passive seismic data. We have developed a novel data-driven workflow specific to our domain, which could be generalized for monitoring other systems with time series data. We use machine learning and geophysical data collected from sensors located on the surface of the levee to identify internal erosion events. In this paper, we describe our research experiments with two-class and one-class support vector machines (SVMs). We use two different data sets from experimental laboratory earth embankments (each having approximately 80% normal and 20% anomalies) to ensure our workflow is robust enough to work with multiple data sets and different types of anomalous events (e.g., cracks and piping). We apply wavelet-denoising techniques and extract nine spectral features from decomposed segments of the time series data. The two-class SVM with 10-fold cross validation achieved over 94% overall accuracy and 96% F1-score. Experiments with the one-class SVM (no labeled data for anomalies) using the top features selected by our automatic feature selection algorithm increase our overall results from 83% accuracy and 89% F1-score to over 91% accuracy and 95% F1-score. Results show that we can successfully separate normal from anomalous data observations. (C) 2016 Elsevier B.V. All rights reserved.
机译:我们研究了土坝和堤坝健康监测以及自动检测被动地震数据中异常事件的技术。我们已经开发了针对我们领域的新颖的数据驱动工作流程,可以推广到使用时间序列数据监视其他系统。我们使用机器学习和从位于堤坝表面的传感器收集的地球物理数据来识别内部侵蚀事件。在本文中,我们描述了使用两类和一类支持向量机(SVM)进行的研究实验。我们使用来自实验实验室土堤的两个不同数据集(每个都有大约80%的正常和20%的异常)来确保我们的工作流足够强大,可以处理多个数据集和不同类型的异常事件(例如,裂缝和管道)。我们应用小波去噪技术,并从时间序列数据的分解片段中提取9个频谱特征。具有10倍交叉验证的两类SVM,总体准确度超过94%,F1得分超过96%。使用自动特征选择算法选择的顶级特征进行一类SVM(无异常数据的无标记数据)的实验,将整体结果从83%的准确性和89%的F1分数提高到91%的准确性和95%的F1分数。结果表明,我们可以成功地将正常数据与异常数据观察分开。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号