首页> 外文期刊>Journal of computational science >Fast Cholesky factorization on GPUs for batch and native modes in MAGMA
【24h】

Fast Cholesky factorization on GPUs for batch and native modes in MAGMA

机译:在MAGMA中针对批处理和本机模式在GPU上进行快速的Cholesky分解

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a GPU-accelerated Cholesky factorization for two different modes of operation. The first one is the batch mode, where many independent factorizations on small matrices can be performed concurrently. This mode supports fixed size and variable size problems, and is found in many scientific applications. The second mode is the native mode, where one factorization is performed on a large matrix without any CPU involvement, which allows the CPU do other useful work. We show that, despite the different workloads, both modes of operation share a common code-base that uses the GPU only. We also show that the developed routines achieve significant speedups against a multicore CPU using the MILL library, and against a GPU implementation by cuSOLVER. This work is part of the MAGMA library. Published by Elsevier B.V.
机译:本文介绍了针对两种不同操作模式的GPU加速的Cholesky分解。第一个是批处理模式,其中可以在小矩阵上同时执行许多独立的分解。此模式支持固定大小和可变大小问题,在许多科学应用程序中都可以找到。第二种模式是本机模式,其中在不涉及任何CPU的情况下对大型矩阵执行一次分解,从而允许CPU做其他有用的工作。我们显示,尽管工作负载不同,但是两种操作模式共享仅使用GPU的通用代码库。我们还表明,开发的例程在使用MILL库的多核CPU和cuSOLVER的GPU实现方面均实现了显着的加速。这项工作是MAGMA库的一部分。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号