首页> 外文期刊>Journal of computational science >Solution to unit commitment in power system operation planning using binary coded modified moth flame optimization algorithm (BMMFOA): A flame selection based computational technique
【24h】

Solution to unit commitment in power system operation planning using binary coded modified moth flame optimization algorithm (BMMFOA): A flame selection based computational technique

机译:使用二进制编码的改进型飞蛾火焰优化算法(BMMFOA)解决电力系统运行计划中机组承诺的问题:一种基于火焰选择的计算技术

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an intelligent computational technique, modified moth-flame optimization algorithm (MMFOA) to examine the exploration and exploitation characteristics of basic MFOA approach. Additionally, the binary coded variants of basic as well as MMFOA namely binary coded modified moth flame optimization algorithms (BMMFOA) are developed for solving unit commitment (UC) problem. The moth-flame algorithm is a nature inspired heuristic search approach that mimics the traverse navigational properties of moths around artificial lights tricked for natural moon light. Unlike many other swarm based approaches, the position update in MFOA is a one-to-one procedure between a moth and corresponding flame. In the basic MFOA, to improve exploitation characteristics of moths, the flame number is reduced as a function of iteration count. The last flame with worst fitness is then duplicated to serve as position update reference for left over (excess) moths. The four additional variants proposed in this paper includes different flame selection procedures based on balance between exploitation and exploration aspects of search process. The proposed BMMFOA variants are tested on unit commitment problem of power system operational scheduling. The binary mapping of continuous/real valued moth, flame locations for solving UC problem is carried out using modified sigmoidal transformation. The efficacy of the proposed BMMFOA against basic MFOA and other approaches for various test systems is analysed in terms of solution quality, execution time and convergence characteristics. Also, several standard statistical tests such as Friedman (aligned and non-aligned), Wilcoxon and Quade test are used to establish statistical significance of BMMFOA among existing approaches and basic MFOA. (C) 2017 Elsevier B.V. All rights reserved.
机译:本文提出了一种智能计算技术,改进的飞蛾优化算法(MMFOA),以检验基本MFOA方法的勘探和开发特性。此外,还开发了基本以及MMFOA的二进制编码变体,即二进制编码的改进型飞蛾火焰优化算法(BMMFOA),用于解决机组承诺(UC)问题。防蛀算法是一种自然启发式启发式搜索方法,它模仿飞蛾围绕自然月光欺骗的人造灯的遍历导航特性。与许多其他基于群体的方法不同,MFOA中的位置更新是飞蛾和相应火焰之间的一对一过程。在基本的MFOA中,为了改善飞蛾的利用特性,根据迭代次数减少火焰数。然后复制适应性最差的最后一个火焰,以用作剩余(过量)飞蛾的位置更新参考。本文提出的四个其他变体包括不同的火焰选择程序,这些程序基于搜索过程的开发和探索之间的平衡。提出的BMMFOA变体在电力系统运行调度的机组承诺问题上进行了测试。使用改进的S形变换对连续/实值飞蛾,火焰位置​​进行二进制映射以解决UC问题。针对解决方案质量,执行时间和收敛特性,分析了所提出的BMMFOA对抗基本MFOA和针对各种测试系统的其他方法的功效。另外,使用几种标准统计检验,例如Friedman(对齐和不对齐),Wilcoxon和Quade检验,来建立BMMFOA在现有方法和基本MFOA中的统计意义。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号