首页> 外文期刊>Journal of computational science >A cascade information diffusion based label propagation algorithm for community detection in dynamic social networks
【24h】

A cascade information diffusion based label propagation algorithm for community detection in dynamic social networks

机译:动态社会网络中基于级联信息扩散的社区传播标签传播算法

获取原文
获取原文并翻译 | 示例

摘要

One of the most important topics in social network analysis is community detection in dynamic social networks. A variety of approaches exists for detecting communities in dynamic social networks, among which the label propagation algorithm (LPA) is the well-known approach. This approach has made remarkable performance, but still has several problems. One of the difficulties of this approach is the new nodes added to the social network graph in the current snapshot has a very slight chance of creating new communities. In fact, these nodes fall under the influence of existing communities. This drawback decreases the accuracy of community detection in dynamic social networks. We propose a new method based on label propagation approach and the cascade information diffusion model in order to solve this difficulty. Here, the newly proposed method, Speaker Listener Propagation Algorithm Dynamic (SLPAD), Dominant Label Propagation Algorithm Evolutionary (DLPAE) and Intrinsic Longitudinal Community Detection (ILCD) on real and synthetic networks are implemented. The findings indicate that the modularity and Normalized Mutual Information (NMI) and also F1(AVG) of this proposed method is considerably higher than the earlier available methods in most datasets. Therefore, it can be concluded that the proposed method improves the accuracy of community detection in comparison with other available methods. (C) 2018 Elsevier B.V. All rights reserved.
机译:社交网络分析中最重要的主题之一是动态社交网络中的社区检测。存在多种用于检测动态社交网络中的社区的方法,其中标签传播算法(LPA)是众所周知的方法。这种方法取得了卓越的性能,但是仍然存在一些问题。这种方法的困难之一是在当前快照中添加到社交网络图中的新节点极少有机会创建新社区。实际上,这些节点受现有社区的影响。此缺点降低了动态社交网络中社区检测的准确性。为了解决这一难题,我们提出了一种基于标签传播方法和级联信息扩散模型的新方法。在这里,新提出的方法,在真实和合成网络上实现了动态的说话者听众传播算法(SLPAD),显性标签传播算法进化算法(DLPAE)和本征纵向社区检测(ILCD)。研究结果表明,该方法的模块化和标准化互信息(NMI)以及F1(AVG)大大高于大多数数据集中的早期可用方法。因此,可以得出结论,与其他可用方法相比,该方法提高了社区检测的准确性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号