首页> 外文期刊>Journal of computational science >Makespan reduction for dynamic workloads in cluster-based data grids using reinforcement-learning based scheduling
【24h】

Makespan reduction for dynamic workloads in cluster-based data grids using reinforcement-learning based scheduling

机译:使用基于强化学习的调度来减少基于集群的数据网格中动态工作负载的跨度

获取原文
获取原文并翻译 | 示例

摘要

Scheduling is one of the important problems within the scope of control and management in grid and cloud-based systems. Data grid still as a primary solution to process data-intensive tasks, deals with managing large amounts of distributed data in multiple nodes. In this paper, a two-phase learning-based scheduling algorithm is proposed for data-intensive tasks scheduling in cluster-based data grids. In the proposed scheduling algorithm, a hierarchical multi agent system, consisting of one global broker agent and several local agents, is applied to scheduling procedure in the cluster-based data grids. At the first step of the proposed scheduling algorithm, the global broker agent selects the cluster with the minimum data cost based on the data communication cost measure, then an adaptive policy based on Q-learning is used by the local agent of the selected cluster to schedule the task to the proper node of the cluster. The impacts of three action selection strategies have been investigated in the proposed scheduling algorithm, and the performance of different versions of the scheduling algorithm regarding different action selection strategies, has been evaluated under three types of workloads with heterogeneous tasks. Experimental results show that for dynamic workloads with varying task submission patterns, the proposed learning-based scheduling algorithm gives better performance compared to four common scheduling algorithm, Queue Length (Shortest Queue), Access Cost, Queue Access Cost (QAC) and HCS, which use regular combinations of primary parameters such as, data communication cost and queue length. Applying a learning-based strategy provides the scheduling algorithm with more adaptability to the changing conditions in the environment. (C) 2017 Elsevier B.V. All rights reserved.
机译:在基于网格和基于云的系统中,调度是控制和管理范围内的重要问题之一。数据网格仍然是处理数据密集型任务的主要解决方案,它处理在多个节点中管理大量分布式数据的问题。本文提出了一种基于两阶段学习的调度算法,用于基于集群的数据网格中的数据密集型任务调度。在提出的调度算法中,将由一个全局代理代理和几个本地代理组成的分层多代理系统应用于基于集群的数据网格中的调度过程。在提出的调度算法的第一步,全局代理基于数据通信成本度量选择数据成本最小的集群,然后所选集群的本地代理使用基于Q学习的自适应策略来将任务安排到群集的适当节点。在提出的调度算法中研究了三种动作选择策略的影响,并且在三种类型的具有异构任务的工作负载下,评估了针对不同动作选择策略的不同版本调度算法的性能。实验结果表明,对于具有不同任务提交模式的动态工作负载,与四种常见调度算法(队列长度(最短队列),访问成本,队列访问成本(QAC)和HCS)相比,该基于学习的调度算法具有更好的性能。使用主要参数的常规组合,例如数据通信成本和队列长度。应用基于学习的策略为调度算法提供了对环境中不断变化的条件的更大适应性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号