首页> 外文期刊>Journal of computational science >Subject-independent hand gesture recognition using normalization and machine learning algorithms
【24h】

Subject-independent hand gesture recognition using normalization and machine learning algorithms

机译:使用归一化和机器学习算法的与主题无关的手势识别

获取原文
获取原文并翻译 | 示例

摘要

Hand gestures can be recognized using the upper limb’s electromyography (EMG) that measures the electrical activity of the skeletal muscles. However, generalization of muscle activities for a particular hand gesture is challenging due to between-subject variations in EMG signals. To improve the gesture recognition accuracy without training the machine learning algorithm subject specifically, the time-domain EMG features are normalized to the area under the averaged root mean square curve (AUC-RMS). Results are compared with both original EMG features and EMG features extracted from the signals that are normalized to the maximum peak value. Ten male adult subjects age ranging 20–37 years performed three hand gestures including fist, wave in, and wave out for ten to twelve times. The four basic time domain features including mean absolute value, zero crossing, waveform length, and slope sign change were extracted from the active EMG signals of each channel. Five machine learning algorithms, namely,k-Nearest Neighbor (kNN), Discriminant Analysis (DA), Naïve Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM) were used to classify the three different hand gestures. The results showed that the performance metrics such as accuracy, F1-score, Matthew correlation coefficient, and Kappa score were improved when using the both normalization methods compared to the original EMG features. However, normalization to the AUC-RMS value resulted in substantially more accurate gesture recognition compared to features extracted from signal normalized to maximum peak value usingkNN, NB, and RF (p < 0.05). The developed approach of classifying different hand gestures will be useful in human-computer interaction as well as in controlling devices including prosthesis, virtual objects, and wheelchair.
机译:使用上肢的肌电图(EMG)可以识别手势,该肌电图可以测量骨骼肌的电活动。然而,由于EMG信号的受试者之间的变化,针对特定手势的肌肉活动的一般化具有挑战性。为了在不专门训练机器学习算法主题的情况下提高手势识别的准确性,将时域EMG特征标准化为平均均方根曲线(AUC-RMS)下的面积。将结果与原始EMG特征和从标准化为最大峰值的信号中提取的EMG特征进行比较。十名年龄在20-37岁之间的男性成年受试者进行了十到十二次的三种手势,包括拳头,挥手和挥手。从每个通道的有效EMG信号中提取了四个基本时域特征,包括平均绝对值,零交叉,波形长度和斜率符号变化。使用五种机器学习算法,即k最近邻(kNN),判别分析(DA),朴素贝叶斯(NB),随机森林(RF)和支持向量机(SVM)对三种不同的手势进行分类。结果表明,与原始的EMG特征相比,使用这两种归一化方法时,诸如准确性,F1-得分,马修相关系数和Kappa得分等性能指标均得到改善。但是,与使用kNN,NB和RF从信号归一化为最大峰值的特征中提取的特征相比,对AUC-RMS值的归一化导致的手势识别要准确得多(p <0.05)。所开发的对不同手势进行分类的方法将在人机交互以及控制设备(包括假体,虚拟物体和轮椅)中很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号