首页> 外文期刊>Journal of computational science >A semantic modeling method for social network short text based on spatial and temporal characteristics
【24h】

A semantic modeling method for social network short text based on spatial and temporal characteristics

机译:基于时空特征的社交网络短文本语义建模方法

获取原文
获取原文并翻译 | 示例

摘要

Given the social network short text native sparsity, semantic inference becomes an infeasible task for conventional topic models. By exploiting the spatial and temporal characteristics of social network data, we propose a social network short text semantic modeling method, named by Spatial and Temporal Topic Model (STTM). To further overcome short text sparsity, STTM leverages co-occurrence word-word pair to reduce the sparsity problem, and moreover, it incorporates time information into the process of topics modeling in order to generate topics with higher quality. Experimental results over four real social media datasets verify the effectiveness of STTM. Published by Elsevier B.V.
机译:给定社交网络短文本本机稀疏性,对于传统主题模型而言,语义推理已成为不可行的任务。通过利用社交网络数据的时空特征,提出一种社交网络短文本语义建模方法,以时空主题模型(STTM)命名。为了进一步克服短文本稀疏性,STTM利用共现词对减少了稀疏性问题,此外,它还将时间信息纳入主题建模过程中,以生成更高质量的主题。在四个真实社交媒体数据集上的实验结果证明了STTM的有效性。由Elsevier B.V.发布

著录项

  • 来源
    《Journal of computational science》 |2018年第9期|281-293|共13页
  • 作者单位

    Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing Key Lab Intelligent Telecommun Software &, Beijing 100876, Peoples R China;

    Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing Key Lab Intelligent Telecommun Software &, Beijing 100876, Peoples R China;

    Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing Key Lab Intelligent Telecommun Software &, Beijing 100876, Peoples R China;

    Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing Key Lab Intelligent Telecommun Software &, Beijing 100876, Peoples R China;

    Beijing Technol & Business Univ, Sch Comp & Informat Engn, Beijing 100048, Peoples R China;

    Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing Key Lab Intelligent Telecommun Software &, Beijing 100876, Peoples R China;

    Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing Key Lab Intelligent Telecommun Software &, Beijing 100876, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Short text; Spatiotemporal characteristics; Semantic analysis; Topic model;

    机译:短文本时空特征语义分析主题模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号