首页> 外文期刊>Journal of computational science >Fuzzy C-means and region growing based classification of tumor from mammograms using hybrid texture feature
【24h】

Fuzzy C-means and region growing based classification of tumor from mammograms using hybrid texture feature

机译:基于混合纹理特征的乳腺X线照片基于模糊C均值和区域增长的肿瘤分类

获取原文
获取原文并翻译 | 示例

摘要

Identifying abnormality using breast mammography is a challenging task for radiologists due to its nature. A more consistent and precise imaging based CAD system plays a vital role in the classiffication of doubtful breast masses. In the proposed CAD system, pre-processing is performed to suppress the noise in the mammographic image. Then segmentation locates the tumor in mammograms using the cascading of Fuzzy C-Means (FCM) and region-growing (RG) algorithm called FCMRG. Features extraction step involves identification of important and distinct elements using Local Binary Pattern Gray-Level Co-occurrence Matrix (LBP-GLCM) and Local Phase Quantization (LPQ). The hybrid features are obtained from these techniques. The mRMR algorithm is employed to choose suitable features from individual and hybrid feature sets. The nominated feature sets are analysed through various machine learning procedures to isolate the malignant tumors from the benign ones. The classifiers are probed on 109 and 72 images of MIAS and DDSM databases respectively using k-fold (10-fold) cross-validation method. The enhanced classification accuracy of 98.2% is achieved for MIAS dataset using hybrid features classified by Decision Tree. Whereas 95.8% accuracy is obtained for DDSM dataset using KNN classifier applied on LPQ features. (C) 2018 Elsevier B.V. All rights reserved.
机译:由于乳腺X线摄影的性质,对乳腺X线摄影进行异常识别是一项艰巨的任务。基于更一致和精确成像的CAD系统在可疑乳腺肿块的分类中起着至关重要的作用。在所提出的CAD系统中,执行预处理以抑制乳房X射线摄影图像中的噪声。然后,使用模糊C均值(FCM)和称为FCMRG的区域增长(RG)算法的级联,在乳房X线照片中对肿瘤进行定位。特征提取步骤涉及使用局部二进制模式灰度共现矩阵(LBP-GLCM)和局部相位量化(LPQ)识别重要和不同的元素。混合特征是从这些技术获得的。 mRMR算法用于从单个和混合特征集中选择合适的特征。通过各种机器学习程序对指定的特征集进行分析,以从良性肿瘤中分离出恶性肿瘤。使用k倍(10倍)交叉验证方法分别在MIAS和DDSM数据库的109和72图像上探测分类器。使用决策树分类的混合特征,MIAS数据集的分类精度提高了98.2%。而使用应用于LPQ功能的KNN分类器可为DDSM数据集获得95.8%的准确性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号