首页> 外文期刊>Journal of Computational and Nonlinear Dynamics >A Parametric Study on the Baumgarte Stabilization Method for Forward Dynamics of Constrained Multibody Systems
【24h】

A Parametric Study on the Baumgarte Stabilization Method for Forward Dynamics of Constrained Multibody Systems

机译:约束多体系统正向动力学的鲍姆加特稳定方法的参数研究

获取原文
获取原文并翻译 | 示例

摘要

This paper presents and discusses the results obtained from a parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. The main purpose of this work is to analyze the influence of the variables that affect the violation of constraints, chiefly the values of the Baumgarte parameters, the integration method, the time step, and the quality of the initial conditions for the positions. In the sequel of this process, the formulation of the rigid multibody systems is reviewed. The generalized Cartesian coordinates are selected as the variables to describe the bodies' degrees of freedom. The formulation of the equations of motion uses the Newton–Euler approach, augmented with the constraint equations that lead to a set of differential algebraic equations. Furthermore, the main issues related to the stabilization of the violation of constraints based on the Baumgarte approach are revised. Special attention is also given to some techniques that help in the selection process of the values of the Baumgarte parameters, namely, those based on the Taylor's series and the Laplace transform technique. Finally, a slider-crank mechanism with eccentricity is considered as an example of application in order to illustrate how the violation of constraints can be affected by different factors.
机译:本文介绍并讨论了从关于约束多体系统正向动力学的Baumgarte稳定方法的参数研究中获得的结果。这项工作的主要目的是分析影响违反约束条件的变量的影响,主要是Baumgarte参数的值,积分方法,时间步长和职位初始条件的质量。在此过程的后续文章中,回顾了刚性多体系统的公式化。选择广义的笛卡尔坐标作为变量来描述物体的自由度。运动方程的公式采用牛顿-欧拉方法,并通过约束方程进行了扩充,从而产生了一组微分代数方程。此外,还对与基于Baumgarte方法的违反约束的稳定化有关的主要问题进行了修订。还特别注意了一些有助于Baumgarte参数值选择过程的技术,即基于泰勒级数和拉普拉斯变换技术的技术。最后,以偏心滑块曲柄机构为例,以说明如何通过不同因素影响约束的违反。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号