首页> 外文期刊>Journal of Computational Neuroscience >Sensitivity of firing rate to input fluctuations depends on time scale separation between fast and slow variables in single neurons
【24h】

Sensitivity of firing rate to input fluctuations depends on time scale separation between fast and slow variables in single neurons

机译:发射速率对输入波动的敏感性取决于单个神经元中快变量和慢变量之间的时间尺度分离

获取原文
获取原文并翻译 | 示例

摘要

Neuronal responses are often characterized by the firing rate as a function of the stimulus mean, or the f-I curve. We introduce a novel classification of neurons into Types A, B-, and B+ according to how f-I curves are modulated by input fluctuations. In Type A neurons, the f-I curves display little sensitivity to input fluctuations when the mean current is large. In contrast, Type B neurons display sensitivity to fluctuations throughout the entire range of input means. Type B- neurons do not fire repetitively for any constant input, whereas Type B+ neurons do. We show that Type B+ behavior results from a separation of time scales between a slow and fast variable. A voltage-dependent time constant for the recovery variable can facilitate sensitivity to input fluctuations. Type B+ firing rates can be approximated using a simple "energy barrier" model.
机译:神经元反应通常以激发率作为刺激平均值或f-I曲线的函数为特征。根据输入波动如何调节f-I曲线,我们将神经元的新型分类引入A,B-和B +型。在A型神经元中,当平均电流较大时,f-I曲线对输入波动的灵敏度很小。相反,B型神经元在整个输入手段范围内显示出对波动的敏感性。对于任何恒定输入,B型神经元不会重复触发,而B +型神经元会触发。我们表明,类型B +的行为是由慢速变量和快速变量之间的时间尺度分离引起的。恢复变量的电压相关时间常数可以促进对输入波动的敏感性。可以使用简单的“能量屏障”模型来估算B +型点火速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号