首页> 外文期刊>Journal of Computational Neuroscience >High-capacity embedding of synfire chains in a cortical network model
【24h】

High-capacity embedding of synfire chains in a cortical network model

机译:皮质网络模型中synfire链的大容量嵌入

获取原文
获取原文并翻译 | 示例

摘要

Synfire chains, sequences of pools linked by feedforward connections, support the propagation of precisely timed spike sequences, or synfire waves. An important question remains, how synfire chains can efficiently be embedded in cortical architecture. We present a model of synfire chain embedding in a cortical scale recurrent network using conductance-based synapses, balanced chains, and variable transmission delays. The network attains substantially higher embedding capacities than previous spiking neuron models and allows all its connections to be used for embedding. The number of waves in the model is regulated by recurrent background noise. We computa- tionally explore the embedding capacity limit, and use a mean field analysis to describe the equilibrium state. Simulations confirm the mean field analysis over broad ranges of pool sizes and connectivity levels; the number of pools embedded in the system trades off against the firing rate and the number of waves. An optimal inhibition level balances the conflicting requirements of stable synfire propagation and limited response to background noise. A simplified analysis shows that the present conductance-based synapses achieve higher contrast between the responses to synfire input and background noise compared to current-based synapses, while regulation of wave numbers is traced to the use of variable transmission delays.
机译:Synfire链(通过前馈连接链接的池序列)支持精确定时的尖峰序列或synfire波的传播。一个重要的问题仍然是,如何将synfire链有效地嵌入到皮质架构中。我们提出了一个使用基于电导的突触,平衡链和可变传输延迟在皮质规模循环网络中嵌入synfire链的模型。该网络比以前的尖峰神经元模型具有更高的嵌入能力,并允许其所有连接用于嵌入。模型中的波数由反复的背景噪声调节。我们以计算方式探索嵌入能力极限,并使用均值场分析来描述平衡状态。仿真结果证实了在广泛的池大小和连通性水平范围内的平均场分析;系统中嵌入的池的数量与发射速率和波浪数之间进行权衡。最佳抑制水平可以平衡稳定的合成火传播和对背景噪声的有限响应之间的冲突要求。简化分析表明,与基于电流的突触相比,当前基于电导的突触在对synfire输入和背景噪声的响应之间实现了更高的对比度,而波数的调节则追溯到可变传输延迟的使用。

著录项

  • 来源
    《Journal of Computational Neuroscience》 |2013年第2期|185-209|共25页
  • 作者单位

    Integrated Simulation of Living Matter Group,RIKEN, Computational Science Research Program,Wako, Saitama, Japan,Laboratory for Perceptual Dynamics, RIKEN,Brain Science Institute, Wako, Saitama, Japan,Laboratory for Computational Neurophysics,RIKEN, Brain Science Institute, Wako, Saitama, Japan,Perceptual Dynamics Laboratory,University of Leuven, Tiensestraat 102,3000 Leuven, Belgium;

    Laboratory for Perceptual Dynamics, RIKEN,Brain Science Institute, Wako, Saitama, Japan,Perceptual Dynamics Laboratory,University of Leuven, Tiensestraat 102,3000 Leuven, Belgium;

    Laboratory for Computational Neurophysics,RIKEN, Brain Science Institute, Wako, Saitama, Japan,Institute of Neuroscience and Medicine,Computational and Systems Neuroscience (INM-6),Research Center Juelich, Juelich, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    recurrent network dynamics; feedforward network; synchrony; synaptic conductance; synfire chain; storage capacity;

    机译:循环网络动态;前馈网络;同步性;突触电导;synfire链;存储容量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号