首页> 外文期刊>Journal of Computational Neuroscience >A network model comprising 4 segmental, interconnected ganglia, and its application to simulate multi-legged locomotion in crustaceans
【24h】

A network model comprising 4 segmental, interconnected ganglia, and its application to simulate multi-legged locomotion in crustaceans

机译:包含4个节段,相互连接的神经节的网络模型及其在模拟甲壳动物多足运动中的应用

获取原文
获取原文并翻译 | 示例

摘要

Inter-segmental coordination is crucial for the locomotion of animals. Arthropods show high variability of leg numbers, from 6 in insects up to 750 legs in millipedes. Despite this fact, the anatomical and functional organization of their nervous systems show basic similarities. The main similarities are the segmental organization, and the way the function of the segmental units is coordinated. We set out to construct a model that could describe locomotion (walking) in animals with more than 6 legs, as well as in 6-legged animals (insects). To this end, we extended a network model by Daun-Gruhn and Tth (Journal of Computational Neuroscience, doi:10.1007/s10827-010-0300-1, 2011). This model describes inter-segmental coordination of the ipsilateral legs in the stick insect during walking. Including an additional segment (local network) into the original model, we could simulate coordination patterns that occur in animals walking on eight legs (e.g., crayfish). We could improve the model by modifying its original cyclic connection topology. In all model variants, the phase relations between the afferent segmental excitatory sensory signals and the oscillatory activity of the segmental networks played a crucial role. Our results stress the importance of this sensory input on the generation of different stable coordination patterns. The simulations confirmed that using the modified connection topology, the flexibility of the model behaviour increased, meaning that changing a single phase parameter, i.e., gating properties of just one afferent sensory signal was sufficient to reproduce all coordination patterns seen in the experiments.
机译:段间协调对于动物的运动至关重要。节肢动物的脚数变化很大,从昆虫中的6条到千足虫的750条。尽管如此,其神经系统的解剖和功能组织仍显示出基本的相似性。主要相似之处在于细分组织,以及细分单位功能的协调方式。我们着手构建一个模型,该模型可以描述多于6条腿的动物以及6条腿动物(昆虫)的运动(行走)。为此,我们扩展了Daun-Gruhn和Tth的网络模型(Journal of Computational Neuroscience,doi:10.1007 / s10827-010-0300-1,2011)。该模型描述了行走过程中竹节虫中同侧腿的节间协调。在原始模型中包括一个额外的区域(本地网络),我们可以模拟在八只腿走路的动物(例如小龙虾)中发生的协调模式。我们可以通过修改其原始的循环连接拓扑来改进模型。在所有模型变体中,传入节段性兴奋性感觉信号与节段网络的振荡活动之间的相位关系起着至关重要的作用。我们的结果强调了这种感觉输入对产生不同稳定协调模式的重要性。仿真结果表明,使用修改后的连接拓扑可以提高模型行为的灵活性,这意味着更改单相参数(即仅一个传入感觉信号的门控特性)就足以重现实验中看到的所有协调模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号