首页> 外文期刊>Journal of Computational Methods in Sciences and Engineering >Spanning trees with minimum number of leaves in the square graph of a tree
【24h】

Spanning trees with minimum number of leaves in the square graph of a tree

机译:在树的正方形图中以最少的叶子数生成树

获取原文
获取原文并翻译 | 示例

摘要

A 3-tree is a tree with the maximum degree at most three. Let T be a tree of order n and p(T) . In this paper, we prove that the square of T has a spanning tree F in which every leave of T has degree one or two and F has at most max{min{[(n-p(T)+7)/2],[(n-1)/2]},2} leaves; This implies that the square graph of a connected graph G has the same conclusion above as a tree. These bounds are all sharp in same sense. We also give a shorter proof of a result in.
机译:三棵树是最大程度最多为三棵的树。令T为n和p(T)的树。在本文中,我们证明T的平方具有生成树F,其中T的每个离开的度数均为1或2,而F的最大值为max {min {[((np(T)+7)/ 2],[ (n-1)/ 2]},2}叶;这意味着,连通图G的正方形图具有与树相同的结论。在相同的意义上,这些界限都是尖锐的。我们还会给出结果的简短证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号