首页> 外文期刊>Journal of Computational Mathematics >ON THE GENERALIZED INVERSE NEVILLE-TYPE MATRIX-VALUED RATIONAL INTERPOLANTS
【24h】

ON THE GENERALIZED INVERSE NEVILLE-TYPE MATRIX-VALUED RATIONAL INTERPOLANTS

机译:关于广义逆Neville型矩阵有理有理插值

获取原文
获取原文并翻译 | 示例

摘要

A new kind of matrix-valued rational interpolants is recursively established by means of generalized Samelson inverse for matrices, with scalar numerator and matrix-valued denominator. In this respect, it is essentially different from that of the previous works, where the matrix-valued rational interpolants is in Thiele-type continued fraction form with matrix-valued numerator and scalar denominator. For both univariate and bivariate cases, sufficient conditions for existence, characterisation and uniqueness in some sense are proved respectively, and an error formula for the univariate interpolating function is also given. The results obtained in this paper are illustrated with some numerical examples.
机译:利用广义标量分子和矩阵值分母,通过广义的Samelson逆矩阵,递归地建立了一种新型的矩阵值有理插值。在这方面,它与先前的工作本质上是不同的,在先前的工作中,矩阵值有理插值是具有矩阵值分子和标量分母的Thiele型连续分数形式。对于单变量和双变量情况,分别证明了在某种意义上存在,刻画和唯一性的充分条件,并且给出了单变量插值函数的误差公式。通过一些数值示例说明了本文获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号