首页> 外文期刊>Journal of Computational Mathematics >SECOND-ORDER CONVERGENCE PROPERTIES OF TRUST-REGION METHODS USING INCOMPLETE CURVATURE INFORMATION, WITH AN APPLICATION TO MULTIGRID OPTIMIZATION
【24h】

SECOND-ORDER CONVERGENCE PROPERTIES OF TRUST-REGION METHODS USING INCOMPLETE CURVATURE INFORMATION, WITH AN APPLICATION TO MULTIGRID OPTIMIZATION

机译:不完全曲率信息的信赖域方法的二阶收敛性质及其在多重网格优化中的应用

获取原文
获取原文并翻译 | 示例

摘要

Convergence properties of trust-region methods for unconstrained nonconvex optimization is considered in the case where information on the objective function's local curvature is incomplete, in the sense that it may be restricted to a fixed set of "test directions" and may not be available at every iteration. It is shown that convergence to local "weak" minimizers can still be obtained under some additional but algorithmically realistic conditions. These theoretical results are then applied to recursive multigrid trust-region methods, which suggests a new class of algorithms with guaranteed second-order convergence properties.
机译:在目标函数的局部曲率信息不完整的情况下,考虑了用于无约束非凸优化的信任区域方法的收敛性质,从某种意义上来说,它可能仅限于固定的“测试方向”集合,并且可能在每次迭代。结果表明,在某些其他但算法上可行的条件下,仍然可以收敛到局部“弱”最小化器。然后将这些理论结果应用于递归多网格信任区域方法,这提出了具有保证的二阶收敛性的一类新算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号