首页> 外文期刊>Journal of Computational and Graphical Statistics >Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks
【24h】

Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks

机译:潜在马尔可夫随机场和社交网络的贝叶斯参数估计

获取原文
获取原文并翻译 | 示例

摘要

Undirected graphical models are widely used in statistics, physics, and machine vision. However, Bayesian parameter estimation for undirected models is extremely challenging, since evaluation of the posterior typically involves the calculation of an intractable normalizing constant. This problem has received much attention, but very little of this has focused on the important practical case where the data consist of noisy or incomplete observations of the underlying hidden structure. This article specifically addresses this problem, comparing two alternate methodologies. In the first of these approaches, particle Markov chain Monte Carlo (Andrieu, Doucet, and Holenstein) is used to efficiently explore the parameter space, combined with the exchange algorithm (Murray, Ghahramani, and MacKay) for avoiding the calculation of the intractable normalizing constant (a proof showing that this combination targets the correct distribution is given in Appendix A available in the online supplementary materials). This approach is compared with approximate Bayesian computation (Pritchard et al.). Applications to estimating the parameters of Ising models and exponential random graphs from noisy data are presented. Each algorithm used in the article targets an approximation to the true posterior due to the use of Markov chain Monte Carlo method (MCMC) to simulate from the latent graphical model, in lieu of being able to do this exactly, in general. Appendix B (online supplementary materials) also describes the nature of the resulting approximation. Supplementary materials for this article are available online.View full textDownload full textKey WordsApproximate Bayesian computation, Exponential random graphs, Graphical models, Intractable normalizing constants, Particle Markov chain Monte CarloRelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/10618600.2012.687493
机译:无向图模型广泛用于统计,物理和机器视觉中。但是,针对无向模型的贝叶斯参数估计非常具有挑战性,因为后验的评估通常涉及难处理的归一化常数的计算。这个问题已经引起了很大的关注,但是很少集中在重要的实际案例上,在该案例中,数据包含对底层隐藏结构的嘈杂或不完整的观察。本文通过比较两种替代方法来专门解决此问题。在这些方法的第一种方法中,使用粒子马尔可夫链蒙特卡洛(Andrieu,Doucet和Holenstein)来有效地探索参数空间,并与交换算法(Murray,Ghahramani和MacKay)结合使用,从而避免了难于归一化的计算常数(在线补充材料中的附录A中提供了证明此组合针对正确分布的证明)。将此方法与近似贝叶斯计算(Pritchard等)进行了比较。提出了从噪声数据估计Ising模型参数和指数随机图参数的应用。由于使用了马尔可夫链蒙特卡罗方法(MCMC)从潜在的图形模型中进行模拟,因此通常无法精确地做到这一点,因此本文中使用的每种算法都将目标近似为真实的后验。附录B(在线补充材料)还描述了所得近似值的性质。这篇文章的补充材料可以在线获得。 citeulike,netvibes,twitter,technorati,美味,linkedin,facebook,stumbleupon,digg,google,更多”,发布:“ ra-4dff56cd6bb1830b”};添加到候选列表链接永久链接http://dx.doi.org/10.1080/10618600.2012.687493

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号