...
首页> 外文期刊>Journal of Computational Electronics >Modeling of single-electron tunneling networks for supersensitive sensors at room temperature
【24h】

Modeling of single-electron tunneling networks for supersensitive sensors at room temperature

机译:室温下超灵敏传感器的单电子隧穿网络建模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Due to their unique properties of ultralow power dissipation and extremely high density, single-electron devices represent the best option for highly sensitive sensors. Despite their excellent performance in capturing subtle electrical signals at cryogenic temperatures, the signal detectability at room temperature or higher is substantially degraded by thermal noise. To reduce such interference from thermal noise at room temperature, the physical dimensions of single-electron devices are conventionally scaled down to below 10 nm, but this leads to great challenges in device fabrication processes. The challenge of retaining superior signal detectability of single-electron devices at room temperature without aggressive scaling is addressed herein. It is proposed that the effects of capacitive and resistive signal coupling between adjacent single-electron devices can be exploited to enhance the signal-to-noise ratio of sensor outputs. A series of efficient coupled networks that shift the peak signal detectability from cryogenic to room temperature are studied. The impacts of the network topology, coupling strength, and bias voltage are investigated. The simulation results reveal that, for given device dimensions, the proposed coupled device network improves the room-temperature signal detectability by 13.2 dB (i.e., an enhancement of 200%) over the uncoupled device array. Moreover, at room temperature, the signal-to-noise ratio of the proposed nonscaled coupled device network is much better than that of aggressively scaled device arrays. These results confirm that efficient coupled networks enable the operation of supersensitive single-electron device sensors at room temperature.
机译:由于具有超低功耗和极高密度的独特特性,单电子器件代表了高灵敏度传感器的最佳选择。尽管它们在低温下捕获微弱的电信号具有出色的性能,但是在室温或更高温度下,信号的可检测性会因热噪声而大大降低。为了减少这种来自室温热噪声的干扰,通常将单电子器件的物理尺寸缩小到10 nm以下,但这给器件制造过程带来了巨大挑战。本文解决了在室温下保持单电子器件的优异信号可检测性而又没有大幅度缩放的挑战。提出可以利用相邻单电子器件之间的电容性和电阻性信号耦合的效果来增强传感器输出的信噪比。研究了一系列有效的耦合网络,这些网络将峰值信号的可检测性从低温转变为室温。研究了网络拓扑,耦合强度和偏置电压的影响。仿真结果表明,对于给定的设备尺寸,所提出的耦合设备网络使室温信号的可检测性比未耦合的设备阵列提高了13.2 dB(即,提高了200%)。而且,在室温下,所提出的非按比例缩放的耦合设备网络的信噪比比积极按比例缩放的设备阵列的信噪比好得多。这些结果证实,有效的耦合网络使超灵敏单电子设备传感器能够在室温下运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号