首页> 外文期刊>Journal of complexity >New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems
【24h】

New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems

机译:迭代过程的新通用收敛理论及其在牛顿-坎托罗维奇型定理中的应用

获取原文
获取原文并翻译 | 示例

摘要

Let T:D is contained in X → X be an iteration function in a complete metric space X. In this paper we present some new general complete convergence theorems for the Picard iteration x_(n+1) = Tx_n with order of convergence at least r ≥ 1. Each of these theorems contains a priori and a posteriori error estimates as well as some other estimates. A central role in the new theory is played by the notions of a function of initial conditions of T and a convergence function of T. We study the convergence of the Picard iteration associated to T with respect to a function of initial conditions £: D → X. The initial conditions in our convergence results utilize only information at the starting point x_0. More precisely, the initial conditions are given in the form E(x_0) ∈ J, where J is an interval on R_+ containing 0. The new convergence theory is applied to the Newton iteration in Banach spaces. We establish three complete ω-versions of the famous semilocal Newton-Kantorovich theorem as well as a complete version of the famous semilocal α-theorem of Smale for analytic functions.
机译:令T:D包含在X→X中,它是一个完整度量空间X中的迭代函数。在本文中,我们提出了Picard迭代x_(n + 1)= Tx_n的一些新的通用完全收敛定理,至少收敛顺序为r≥1.这些定理中的每一个都包含先验和后验误差估计,以及其他一些估计。 T的初始条件的函数和T的收敛函数的概念在新理论中起着核心作用。我们研究与T相关的Picard迭代关于初始条件的收敛性£:D→ X。我们收敛结果中的初始条件仅利用起点x_0处的信息。更精确地,初始条件以E(x_0)∈J的形式给出,其中J是R_ +上包含0的间隔。新的收敛理论被应用于Banach空间中的牛顿迭代。我们建立了著名的半局部牛顿-坎托罗维奇定理的三个完整的ω-版本以及著名的Smale半局部α-定理的完整版本以用于解析函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号