首页> 外文期刊>Journal of complexity >L-p- and Sp,q(r)B-discrepancy of the symmetrized van der Corput sequence and modified Hammersley point sets in arbitrary bases
【24h】

L-p- and Sp,q(r)B-discrepancy of the symmetrized van der Corput sequence and modified Hammersley point sets in arbitrary bases

机译:对称范德科普特序列和修正的Hammersley点集在任意碱基上的L-p-和Sp,q(r)B-差异

获取原文
获取原文并翻译 | 示例

摘要

We study the local discrepancy of a symmetrized version of the well-known van der Corput sequence and of modified two-dimensional Hammersley point sets in arbitrary base b. We give upper bounds on the norm of the local discrepancy in Besov spaces of dominating mixed smoothness (Sp,qB)-B-r([0, 1)(s)), which will also give us bounds on the L-p-discrepancy. Our sequence and point sets will achieve the known optimal order for the L-p- and (Sp,qB)-B-r-discrepancy. The results in this paper generalize several previous results on L-p- and (Sp,qB)-B-r-discrepancy estimates and provide a sharp upper bound on the (Sp,qB)-B-r-discrepancy of one-dimensional sequences for r > 0. We will use the b-adic Haar function system in the proofs. (C) 2016 Published by Elsevier Inc.
机译:我们研究了著名范德科普特序列的对称版本和任意基数b中经过修改的二维Hammersley点集的局部差异。我们在控制混合光滑度(Sp,qB)-B-r([0,1)(s))的Besov空间中的局部差异范数上给出上限,这也将在L-p差异上给出界限。我们的序列和点集将实现L-p-和(Sp,qB)-B-r-差异的已知最佳顺序。本文的结果归纳了Lp和(Sp,qB)-Br差异估计的先前结果,并为r> 0的一维序列(Sp,qB)-Br差异提供了清晰的上限。我们将在证明中使用b-adic Haar函数系统。 (C)2016由Elsevier Inc.发布

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号