首页> 外文期刊>Journal of combinatorial mathematics and combinatorial computing >On the adjacent vertex-distinguishing total colorings of some cubic graphs
【24h】

On the adjacent vertex-distinguishing total colorings of some cubic graphs

机译:在相邻的顶点区分某些立方图的总着色

获取原文
获取原文并翻译 | 示例

摘要

Suppose G - (V, E) is a simple graph and / : (V ∪ E) -¥ {1,2,... ,k} is a proper total fc-coloring of G. Let C(u) = {/(u)} ∪ {f(uv) : uv ∈ E(G)} for each vertex u of G. The coloring / is said to be an adjacent vertex-distinguishing total coloring of G if C(u) C(v) for every uv ∈ E(G). The minimum fc for which such a coloring of G exists is called the adjacent vertex-distinguishing total chromatic number of G, and is denoted by X_(at)(G). This paper considers three types of cubic graphs: a specific family of cubic hamiltonian graphs, snares and Generalized Petersen graphs. We prove that these cubic graphs have the same adjacent vertex-distinguishing total chromatic number 5. This is a step towards a problem that whether the bound X_(at)(G) < 6 is sharp for a graph G with maximum degree three.
机译:假设g - (v,e)是一个简单的图表和/:(v = e) - ¥{1,2,...,k}是G的适当总FC色。Let C(U)= { /(u)}} {f(uv):G的每个顶点U(UV):UV∈e(g)}对于G的每个顶点U.据说着色/被认为是G如果c(u)c(v)的相邻顶点区分总着色 )对于每种UV∈e(g)。 存在这种着色的最小Fc被称为相邻的顶点区分G的总色数,并且由X_(AT)(G)表示。 本文考虑了三种类型的立方图:特定的立方汉密尔顿图形,捕获和广义彼得伦图。 我们证明,这些立方图具有相同的相邻顶点区分总色谱数5.这是朝向具有最大三度的图形G的绑定X_(处)(G)<6的问题的步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号