首页> 外文期刊>The Journal of Combinatorial Mathematics and Combinatorial Computing >Minimum Number of Vertices of Graphs without Perfect Matching, with Given Edge Connectivity and Minimum and Maximum Degrees
【24h】

Minimum Number of Vertices of Graphs without Perfect Matching, with Given Edge Connectivity and Minimum and Maximum Degrees

机译:在给定的边缘连通性以及最小和最大程度的情况下,没有完美匹配的图的顶点的最小数量

获取原文
获取原文并翻译 | 示例

摘要

A matching M in a graph G is a subset of E(G) in which no two edges have a vertex in common. A vertex V is unsaturated by M if there is no edge of M is incident with v. A matching M is called a perfect matching if there is no vertex of the graph is unsaturated by M. Let G be a K-edge-connected graph, k≥1, on even n vertices, have minimum degree r and maximum degree r+e, e≥1. In this paper we find a lower bound for n when G has no perfect matchings.
机译:图G中的匹配M是E(G)的子集,其中没有两个边具有相同的顶点。如果没有M的边沿与v接触,则顶点V被M所不饱和。如果没有图的顶点被M所饱和,则匹配M称为完全匹配。 ,k≥1,在偶数个顶点上,最小度r和最大度r + e,e≥1。在本文中,当G没有完美匹配时,我们找到n的下界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号