首页> 外文期刊>Journal of Civil Engineering Research >Application of Artificial Intelligence to Predict Compressive Strength of Concrete from Mix Design Parameters: A Structural Engineering Application
【24h】

Application of Artificial Intelligence to Predict Compressive Strength of Concrete from Mix Design Parameters: A Structural Engineering Application

机译:人工智能在配合比设计参数预测混凝土抗压强度中的应用:结构工程应用

获取原文
获取原文并翻译 | 示例

摘要

There are no fixed formulations for mixing concrete constituents to obtain the compressive strength. Concrete mixing is predominantly a qualitative knowledge-based approach subjected to variations. Reliance on such an approach compromises the precision and accuracy of concrete properties, and hence necessitates the development of a reliable mixing formulation. Statistical modeling techniques like Multiple Linear Regression Analysis (MLRA) have been used in the past. However, these methods have failed to accurately predict the compressive strength. This is due to the highly nonlinear relationship between the concrete proportions and its properties. In this paper a Neural Network model for predicting the compressive strength of concrete for different mix-design parameters is developed. A neural network model based on five hidden layers was trained using the results of a series of previously conducted experiments. Each experiment consisted of five parameters and a corresponding compressive strength obtained from 28-days cylinders tests. It was observed that the neural network model performed with satisfactory results in predicting the 28-day compressive strength of concrete.
机译:没有固定的配方来混合混凝土成分以获得抗压强度。混凝土拌和主要是一种基于知识的定性方法,该方法容易发生变化。对这种方法的依赖损害了混凝土性能的精度和准确性,因此需要开发可靠的混合配方。过去已经使用了诸如多重线性回归分析(MLRA)之类的统计建模技术。但是,这些方法未能准确预测抗压强度。这是由于混凝土比例与其性能之间的高度非线性关系。本文建立了一个神经网络模型来预测混凝土在不同配合比设计参数下的抗压强度。使用一系列先前进行的实验的结果,训练了基于五个隐藏层的神经网络模型。每个实验由五个参数组成,并从28天的气瓶测试中获得相应的抗压强度。观察到神经网络模型在预测混凝土的28天抗压强度方面表现出令人满意的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号