首页> 外文期刊>Journal of circuits, systems and computers >Multi-Feature Analysis for Automated Brain Stroke Classification Using Weighted Gaussian Naive Bayes Classifier
【24h】

Multi-Feature Analysis for Automated Brain Stroke Classification Using Weighted Gaussian Naive Bayes Classifier

机译:自动脑卒中分类多种特征分析使用加权高斯天真贝叶斯分类器

获取原文
获取原文并翻译 | 示例

摘要

In today's world, brain stroke is considered as a life-threatening disease provoked by undesirable blockage among the arteries feeding the human brain. The timely diagnosis of this brain stroke detection in Magnetic Resonance Imaging (MRI) images increases the patient's survival rate. However, automated detection plays a significant challenge owing to the complexity of the shape, dimension of size and the location of stroke lesions. In this paper, a novel optimized fuzzy level segmentation algorithm is proposed to detect the ischemic stroke lesions. After segmentation, the multi-textural features are extracted to form a feature set. These features are given as input to the proposed weighted Gaussian Naive Bayes classifier to discriminate normal and abnormal stroke lesion classes. The experimental result manifests that the proposed methodology achieves a higher accuracy as compared with the existing state-of-the-art techniques. The proposed classifier discriminates normal and abnormal classes effciently and attains 99.32% of accuracy, 96.87% of sensitivity and 98.82% of F1 measure.
机译:在今天的世界中,脑中风被认为是一种威胁人类脑中的动脉中不良堵塞的危及生命的疾病。在磁共振成像(MRI)图像中的这种脑卒中检测的及时诊断增加了患者的存活率。然而,由于形状,尺寸的尺寸和行程病变的位置,自动检测发挥着重大挑战。本文提出了一种新颖的优化模糊水平分割算法来检测缺血性卒中病变。在分段之后,提取多纹理特征以形成特征集。这些特征被给出了所提出的加权高斯天真贝叶斯分类器的输入,以区分正常和异常的行程病变类。实验结果表明,与现有的最先进技术相比,所提出的方法达到更高的准确性。所提出的分类器有效地歧视正常和异常的课程,达到99.32%的精度,灵敏度的96.87%,占F1测量的98.82%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号