首页> 外文期刊>Journal of circuits, systems and computers >An Efficient Implementation of Low-Latency Two-Dimensional Gaussian Smoothing Filter using Approximate Carry-Save Adder
【24h】

An Efficient Implementation of Low-Latency Two-Dimensional Gaussian Smoothing Filter using Approximate Carry-Save Adder

机译:使用近似随身保存加法器有效地实现低延迟二维高斯平滑过滤器

获取原文
获取原文并翻译 | 示例

摘要

The two-dimensional Gaussian smoothing filter (2D-GSF) is one of the most useful techniques in image processing. Since the 2D-GSF requires high computational resources, its efficient design and implementation are critical in real-time processing purposes. Approximate computing is a new method that can be used to increase the performance of 2D Gaussian filter design with low computing overhead on field-programmable gate arrays (FPGAs). This study aims to provide a low-latency Gaussian filter architecture on FPGA such that it can be used in real-time processing applications. In this regard, accurate and approximate carry-save adders (CSAs) have been used in adder tree-based Gaussian filters. In our proposed method, we use two approximation steps: in the first step, we use an approximation structure named Speed-Power-Area-Accuracy for Gaussian filter design and in the second stage, we use approximate CSAs to convert adder-tree structures that are used in Gaussian filter, and as a result, we have significantly reduced the delay. The results of simulation and implementation show that the latency has reduced in a 3x 3 2D-GSF architecture up to 22% using proposed accurate CSAs and 45% using proposed approximate CSAs, compared to existing Gaussian filters with an adder tree structure.
机译:二维高斯平滑过滤器(2D-GSF)是图像处理中最有用的技术之一。由于2D-GSF需要高计算资源,因此其有效的设计和实现在实时处理目的中至关重要。近似计算是一种新方法,可用于提高2D高斯滤波器设计的性能,在现场可编程门阵列(FPGA)上具有低计算开销。本研究旨在在FPGA上提供低延迟高斯滤波器架构,使得它可以用于实时处理应用。在这方面,准确和近似的随身保存添加剂(CSA)已用于加法器树的高斯滤波器。在我们提出的方法中,我们使用两个近似步骤:在第一步中,我们使用近似结构为高斯滤波器设计和第二阶段,使用近似CSA来转换加法器树结构的近似结构用于高斯过滤器,因此,我们显着降低了延迟。仿真和实施结果表明,与具有加法器树结构的现有高斯滤波器相比,使用所提出的准确CSA和45%,延迟在3倍3 2D-GSF架构中减少了高达22%的22%,相比,使用所提出的近似CSA。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号