首页> 外文期刊>Journal of circuits, systems and computers >Intrusion Detection for In-vehicle Network by Using Single GAN in Connected Vehicles
【24h】

Intrusion Detection for In-vehicle Network by Using Single GAN in Connected Vehicles

机译:通过在连接的车辆中使用单个GaN的车载网络入侵检测

获取原文
获取原文并翻译 | 示例

摘要

Controller area network (CAN) bus-based connected and even self-driving vehicles suffer severe cybersecurity challenges because connections from outside the vehicle and an existing security vulnerability on CAN expose passengers to privacy and security threats. Generative adversarial nets (GAN)-based intrusion detection systems (IDSs) for in-vehicle network can eliminate the limit of insufficient types of attack data suffered by the deep learning-based IDSs. The existing GAN-based IDS is a hybrid deep learning model built by DNN and GAN, which is too complex to have a short detection time. The evaluation performance of this model can be further improved. To mitigate this issue, we propose another GAN-based intrusion detection method for in-vehicle network, which is a single improved GAN. The proposed model can have better evaluation metrics, e.g., the testing accuracy rate is up to 99.8% and poor detection performance is addressed when a single GAN is used in intrusion detection for the in-vehicle network. In this paper, we design a new loss function for generator in GAN to enhance an ability to produce fake abnormal data, and utilize a sparse enhancement training method helping discriminator in GAN to correct the arbitration bias for fake attack data every 100 steps. In addition, we utilize fewer convolution and de-convolution layers for constructing GAN model, which can reduce the calculation time theoretically and ultimately shorten the detection time to 0.12 +/- 0.03 width=".17em"ms for a data block built by 64 CAN messages. We evaluate this improved GAN-based intrusion detection by test set. The results demonstrate that our method has not only a capacity of five classifications, but also better evaluation performance than the existing method in the area of GAN-based IDSs for the in-vehicle network.
机译:控制器区域网络(CAN)总线连接的基础,甚至自驾车车辆遭受严重的网络安全挑战,因为来自于车辆和现有的安全漏洞外的连接可以暴露乘客的隐私和安全的威胁。在车载网络生成对抗性网(GaN)基入侵检测系统(IDS)可以消除类型不够用为基础的学习深刻的入侵检测系统遭受攻击的数据的限制。 GaN基现有的IDS是DNN和GaN建成了混合深度学习模式,这是太复杂,具有检测时间短。该模型的评估性能可以进一步提高。为了缓解这一问题,我们提出了车载网络,这是一个改进GAN另一个基于GaN的入侵检测方法。该模型可以具有更好的评价指标,例如,测试准确率高达99.8%,并且当单个GAN在入侵检测被用于在车载网络差检测性能被寻址。在本文中,我们设计了赣产生新的损失函数,以增强能力,生产伪劣异常数据,并利用稀疏增强训练方法帮助鉴别赣更正为每100步假的攻击数据仲裁偏差。此外,我们利用更少的卷积和反卷积层用于构建GAN模型,这在理论上可以减少计算时间,并最终缩短了检测时间到0.12 +/- 0.03宽度=“ 17em”毫秒用于通过内置64的数据块CAN消息。我们评估的测试集这一改进基于GaN的入侵检测。结果表明,该方法不仅有能力五类,但比基于GaN的入侵检测系统,为车载网络领域的现有方法也比较好评价的性能。

著录项

  • 来源
    《Journal of circuits, systems and computers》 |2021年第1期|2150007.1-2150007.20|共20页
  • 作者单位

    Hunan Univ Coll Comp Sci & Elect Engn Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Comp Sci & Elect Engn Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Comp Sci & Elect Engn Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Comp Sci & Elect Engn Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Comp Sci & Elect Engn Changsha 410082 Hunan Peoples R China;

    Hunan Univ Coll Comp Sci & Elect Engn Changsha 410082 Hunan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CAN; GAN; in-vehicle network; IDSs;

    机译:可以;GaN;车载网络;IDSS;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号