首页> 外文期刊>Journal of circuits, systems and computers >A Novel Scale Insensitive KCF Tracker Based on HOG and Color Features
【24h】

A Novel Scale Insensitive KCF Tracker Based on HOG and Color Features

机译:基于猪和彩色特征的一种新型规模不敏感KCF跟踪器

获取原文
获取原文并翻译 | 示例

摘要

Kernelized Correlation Filters (KCF) for visual tracking have received much attention due to their fast speed and outstanding performances in real scenarios. However, the KCF sometimes still fails to track the targets with different scales, and it may drift because the target response is fixed and the original histogram of orientation gradient (HOG) features cannot represent the targets well. In this paper, we propose a novel fast tracker, which is based on KCF and insensitive to scale changes by learning two independent correlation filters (CFs) where one filter is designed for position estimation and the other is for scale estimation. In addition, it can adaptively change the target response and multiple features are integrated to improve the performance for our tracker. Finally, we employ an adaptive high confidence filters updating scheme to avoid errors. Evaluated on the popular OTB50 and OTB100 datasets, our proposed trackers show superior performances in terms of efficiency and accuracy compared to the existing methods.
机译:由于其在实际情况中的快速和出色的性能,所以视觉跟踪的内核相关滤波器(KCF)受到了很大的关注。但是,KCF有时仍然无法跟踪具有不同尺度的目标,并且它可能会漂移,因为目标响应是固定的,并且定向梯度(Hog)特征的原始直方图不能良好地表示目标。在本文中,我们提出了一种新的快速跟踪器,其基于KCF并通过学习两个独立的相关滤波器(CFS)来进行比例变化,其中一个滤波器被设计用于位置估计,另一个是用于比例估计。此外,它可以自适应地改变目标响应,并集成了多个功能以提高跟踪器的性能。最后,我们采用了自适应高置信滤波器更新方案以避免错误。在流行的OTB50和OTB100数据集上进行评估,我们所提出的跟踪器与现有方法相比,在效率和准确性方面表现出优越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号