首页> 外文期刊>Journal of circuits, systems and computers >Fault Tolerant Control for Wind Turbine System Based on Model Reference Adaptive Control and Particle Swarm Optimization Algorithm
【24h】

Fault Tolerant Control for Wind Turbine System Based on Model Reference Adaptive Control and Particle Swarm Optimization Algorithm

机译:基于模型参考自适应控制和粒子群优化算法的风力涡轮机系统容错控制

获取原文
获取原文并翻译 | 示例

摘要

This paper tackles the problem of Fault Tolerant Control (FTC) for Wind Turbine System. Motivated by the Model Reference Adaptive Control (MRAC) and the Particle Swarm Optimization Algorithm (PSOA), the main contribution of this work is to provide online tuning for the wind turbine controller. In order to achieve the required system performances, even during components and/or system faults, our proposed strategy takes care of an adaptive controller in which the desired performance is expressed in terms of a reference model. The controller parameter adjustments are made using the stability theory that involves the gradient function and the Lyapunov function. Moreover, the minimization of the fitness function of PSOA allows convergence of the proposed MRAC to an optimal point, owing to redistribution of the control signals when a failure or noise occurs. The simulation results have shown good performance than some existing approaches in the literature.
机译:本文解决了风力涡轮机系统的容错控制(FTC)问题。由模型参考自适应控制(MRAC)和粒子群优化算法(PSOA)的激励,这项工作的主要贡献是提供风力涡轮机控制器的在线调整。为了实现所需的系统性能,即使在组件和/或系统故障期间,我们所提出的策略也会处理自适应控制器,其中以参考模型表示所需的性能。控制器参数调整使用涉及梯度函数和Lyapunov函数的稳定性理论进行。此外,PSOA的适应度函数的最小化允许提出的MRAC收敛到最佳点,因为当发生故障或噪声时控制信号的重新分布。仿真结果表现出比文献中现有的一些方法表现出色。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号